首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Zooplankton communities were studied in southeastern Beaufort Sea (Arctic Ocean) in September–October 2002. Cluster analysis and non-metric multidimensional scaling revealed three distinct mesozooplankton assemblages. A neritic assemblage occurred on the Mackenzie Shelf and in Franklin Bay, while distinct off-shelf assemblages prevailed in the Cape Bathurst Polynya and on the Beaufort Slope respectively. Over 95% of the mesozooplankton was comprised of eight copepod taxa. Pseudocalanus spp. contributed predominantly to the discrimination of the three assemblages and was the only significant indicator of the Shelf assemblage. Oithona similis, Oncaea borealis, Metridia longa and Calanus hyperboreus were indicators of the Polynya assemblage. Cyclopina sp. and Microcalanus pygmaeus were indicative of the overall off-shelf community (Polynya and Slope assemblages). The importance of omnivores and carnivores increased from the shelf to the polynya and the slope. Station depth and duration of reduced ice conditions during summer (< 50% ice concentration) underpinned the distribution of the assemblages (r2 = 0.71 and 0.45 respectively). The abundance of Pseudocalanus spp. was independent of depth and increased with the duration of reduced ice conditions (rs = 0.438). The abundance of Cyclopina sp., M. pygmaeus and other indicators of the offshore assemblages followed the opposite trend (rs = − 0.467 and − 0.5 respectively). Under continued climate warming, a reduction of the ice cover will affect the biogeography of mesozooplankton on and around the Mackenzie Shelf, to the potential advantage of Pseudocalanus spp. and other calanoid herbivores.  相似文献   

2.
As part of the Canadian Arctic Shelf Exchange Study (CASES), we investigated the spatial and seasonal distributions of viruses in relation to biotic (bacteria, chlorophyll-a (chl a)) and abiotic variables (temperature, salinity and depth). Sampling occurred in the southern Beaufort Sea Shelf in the region of the Amundsen Gulf and Mackenzie Shelf, between November 2003 and August 2004. Bacterial and viral abundances estimated by epifluorescence microscopy (EFM) and flow cytometry (FC) were highly correlated (r2 = 0.89 and r2 = 0.87, respectively), although estimates by EFM were slightly higher (FC = 1.08 × EFM + 0.12 and FC = 1.07 × EFM + 0.43, respectively). Viral abundances ranged from 0.13 × 106 to 23 × 106 ml− 1, and in surface waters were ~ 2-fold higher during the spring bloom in May and June and ~ 1.5-fold higher during July and August, relative to winter abundances. These increases were coincident with a ~ 6-fold increase in chl a during spring and a ~ 4-fold increase in bacteria during summer. Surface viral abundances near the Mackenzie River were ~ 2-fold higher than in the Mackenzie Shelf and Amundsen Gulf regions during the peak summer discharge, concomitant with a ~ 5.5-fold increase in chl a (up to 2.4 μg l− 1) and a ~ 2-fold increase in bacterial abundance (up to 22 × 105 ml− 1). Using FC, two subgroups of viruses and heterotrophic bacteria were defined. A low SYBR-green fluorescence virus subgroup (V2) representing ~ 71% of the total viral abundance, was linked to the abundance of high nucleic acid fluorescence (HNA) bacteria (a proxy for bacterial activity), which represented 42 to 72% of the bacteria in surface layers. A high SYBR-green fluorescence viral subgroup (V1) was more related to high chl a concentrations that occurred in surface waters during spring and at stations near the Mackenzie River plume during the summer discharge. These results suggest that V1 infect phytoplankton, while most V2 are bacteriophages. On the Beaufort Sea shelf, viral abundance displayed seasonal and spatial variations in conjunction with chl a concentration, bacterial abundance and composition, temperature, salinity and depth. The highly dynamic nature of viral abundance and its correlation with increases in chl a concentration and bacterial abundance implies that viruses are important agents of microbial mortality in Arctic shelf waters.  相似文献   

3.
Mercury (Hg) levels in the Beaufort Sea beluga population have been increasing since the 1990's. Ultimately, it is the Hg content of prey that determines beluga Hg levels. However, the Beaufort Sea beluga diet is not understood, and little is known about the diet Hg sources in their summer habitat. During the summer, they segregate into social groups based on habitat use leading to the hypothesis that they may feed in different food webs explaining Hg dietary sources. Methyl mercury (MeHg) and total mercury (THg) levels were measured in the estuarine-shelf, Amundsen Gulf and epibenthic food webs in the western Canadian Arctic collected during the Canadian Arctic Shelf Exchange Study (CASES) to assess their dietary Hg contribution. To our knowledge, this is the first study to report MeHg levels in estuarine fish and epibenthic invertebrates from the Arctic Ocean. Although the Mackenzie River is a large source of Hg, the estuarine-shelf prey items had the lowest MeHg levels, ranging from 0.1 to 0.27 μg/g dry weight (dw) in arctic cisco (Coregonus autumnalis) and saffron cod (Eleginus gracilis) respectively. Highest MeHg levels occurred in fourhorn sculpin (Myoxocephalus quadricornis) (0.5 μg/g dw) from the epibenthic food web. Beluga hypothesized to feed in the epibenthic and Amundsen Gulf food webs had the highest Hg levels matching with high Hg levels in associated food webs, and estuarine-shelf belugas had the lowest Hg levels (2.6 μg/g dw), corresponding with the low food web Hg levels, supporting the variation in dietary Hg uptake. The trophic level transfer of Hg was similar among the food webs, highlighting the importance of Hg sources at the bottom of the food web as well as food web length. We propose that future biomagnification studies incorporate predator behaviour with food web structure to assist in the evaluation of dietary Hg sources.  相似文献   

4.
This study formed part of the Northeast Water project (NEW project) which dealt with physical, geophysical and biological processes in the Northeast Water Polynya off Northeast Greenland. This was part of the International Arctic Polynya Programme (IAPP). The diatom composition of the water masses, sea ice and melt ponds was analysed to show the relationship between ice and the water column near the ice with regard to the origin and fate of the cells in the ice and melt ponds. Fragilariopsis oceanica, Fragiliria sp. I and Chaetoceros socialis usually dominated the phytoplankton, while the ice and melt pond samples showed a wide range of assemblages, with different single-celled pennates and two undescribed species, Navicula sp. 1 and Nitzschia sp. 1 often dominant. Planktonic algae in sea ice can be released into the water column during ice break-up and melt, thus contributing to the spring bloom in the water column, if the timing of the release and the species composition are correct. The number of different ice algal assemblages supports the theory that cells originated from the water column, the benthos and freshwater. In addition, differential growth in the sea ice or melt ponds often altered the relative abundance of species in comparison with what is usually found in their original habitat. However, many of the cells in the ice and melt ponds were dead (empty frustules), making it difficult to determine whether the cells had actually lived in these habitats.  相似文献   

5.
We evaluated the phylogenetic diversity of particle-associated and free-living archaeal assemblages from the Mackenzie River and Beaufort Sea in the western Canadian Arctic. The physico-chemical characteristics of the water separated the sampling sites into three groups: riverine, coastal and marine water, which had strikingly different archaeal communities. The riverine water was characterised by the presence of Euryarchaeota mainly belonging to the LDS and RC-V clusters. The coastal water was also dominated by Euryarchaeota but they were mostly affiliated to Group II.a. The marine waters contained most exclusively Crenarchaeota belonging to the Marine Group I.1a. The results suggest that Euryarchaeota in the coastal surface layer are associated with particle-rich waters, while Crenarchaeota are more characteristic of Arctic Ocean waters that have been less influenced by riverine inputs. The particle-associated communities were similar to the free-living ones at the riverine and marine sites but differed from each other at the coastal site in terms of the presence or absence of some taxonomic groups in one of the fractions, or differences in the proportion of the phylogenetic groups. However, there was no specific archaeal group that was exclusively restricted to the free-living or particle fraction, and the diversity of the particle-associated archaeal assemblages did not significantly differ from the diversity of the free-living communities.  相似文献   

6.
The distribution and diet of larval and juvenile Arctic cod (Boreogadus saida) were studied during summer 2005 in the coastal Canadian Beaufort Sea. A total of 275 individuals were captured and the highest abundance was observed at station depths of 20–30 m. This corresponds well with the location of the frontal zone where the Mackenzie River plume water and open sea water meet. Diet examinations were performed on 220 Arctic cod, which were found undamaged from sampling. We observed a gradual decrease in prey number per fish and increase in prey size as larvae grew which corresponded to a shift from Rotifera and nauplii towards larger copepodid stages. However, at all sizes, the larvae remain generalists and feed on a broad range of organisms. Environmental changes due to climate warming could have a two-fold impact on fish larvae feeding in the studied region. First, the potential for increased primary production may lead to increased zooplankton production that may impact the feeding and nutrition positively. On the other hand, greater discharge of turbid water from the Mackenzie River may reduce light penetration in the water column that may negatively influence the ability of visual predators to successively forage.  相似文献   

7.
We examined the influence of the Mackenzie River plume on sinking fluxes of particulate organic and inorganic material on the Mackenzie Shelf, Canadian Arctic. Short-term particle interceptor traps were deployed under the halocline at 3 stations across the shelf during fall 2002 and at 3 stations along the shelf edge during summer 2004. During the two sampling periods, the horizontal patterns in sinking fluxes of particulate organic carbon (POC) and chlorophyll a (chl a) paralleled those in chl a biomass within the plume. Highest sinking fluxes of particulate organic material occurred at stations strongly influenced by the river plume (maximum POC sinking fluxes at 25 m of 98 mg C m− 2 d− 1 and 197 mg C m− 2 d− 1 in 2002 and 2004, respectively). The biogeochemical composition of the sinking material varied seasonally with phytoplankton and fecal pellets contributing considerably to the sinking flux in summer, while amorphous detritus dominated in the fall. Also, the sinking phytoplankton assemblage showed a seasonal succession from a dominance of diatoms in summer to flagellates and dinoflagellates in the fall. The presence of the freshwater diatom Eunotia sp. in the sinking assemblage directly underneath the river plume indicates the contribution of a phytoplankton community carried by the plume to the sinking export of organic material. Yet, increasing chl a and BioSi sinking fluxes with depth indicated an export of phytoplankton from the water column below the river plume during summer and fall. Grazing activity, mostly by copepods, and to a lesser extent by appendicularians, appeared to occur in a well-defined stratum underneath the river plume, particularly during summer. These results show that the Mackenzie River influences the magnitude and composition of the sinking material on the shelf in summer and fall, but does not constitute the only source of material sinking to depth at stations influenced by the river plume.  相似文献   

8.
Suspended material, nutrients and organic matter in Mackenzie River water were tracked along a 300 km transect from Inuvik (Northwest Territories, Canada), across the estuarine salinity gradient in Kugmallit Bay, to offshore marine stations on the adjacent Mackenzie Shelf. All particulates measured (SPM, POC, PN, PP) declined by 87–95% across the salinity gradient and levels were generally below conservative mixing. Organic carbon content of suspended material decreased from 3.1% in the river to 1.7% in shelf surface waters while particulate C:N concurrently decreased from 17.1 to 8.6. Nitrate and silicate concentrations declined by more than 90% across the salinity gradient, with nitrate concentrations often below the conservative mixing line. Phosphate concentrations increased from 0.03 μmol/L in the river to 0.27 μmol/L over shelf waters, thereby changing the inorganic nutrient regime downstream from P to N limitation. Dissolved organic carbon decreased conservatively offshore while dissolved organic N and P persisted at high levels in the Mackenzie plume relative to river water, increasing 2.7 and 25.3 times respectively. A deep chlorophyll-a maximum was observed at two offshore stations and showed increases in most nutrients, particulates and organic matter relative to the rest of the water column. During river passage through the Mackenzie estuary, particulate matter, dissolved organic carbon and inorganic nutrients showed sedimentation, dilution and biological uptake patterns common to other arctic and non-arctic estuaries. Alternatively, inorganic content of particles increased offshore and dissolved organic N and P increased substantially over the shelf, reaching concentrations among the highest reported for the Arctic Ocean. These observations are consistent with the presence of a remnant ice-constrained (‘stamukhi’) lake from the freshet period and a slow flushing river plume constrained by sea-ice in close proximity to shore. Nutrient limitation in surface shelf waters during the ARDEX cruise contributed to the striking deep chlorophyll-a maximum at 21 m where phytoplankton communities congregated at the margin of nutrient-rich deep ocean waters.  相似文献   

9.
Helicopter-borne sensors have been used since the early 1990s to monitor ice properties in support of winter marine transportation along the east coast of Canada. The observations are used in ice chart production and to validate ice hazard identification algorithms using satellite advanced synthetic aperture radar (ASAR) imagery. In this study we evaluated the sensors' additional capability to monitor the freshwater plume characteristic beneath land-fast ice. During the Canadian Arctic Shelf Exchange Study (CASES) data were collected over the Mackenzie Delta in the southern Beaufort Sea where a buoyant river plume exists. Results showed that the electromagnetic–laser system could describe not only the ice properties but also the horizontal distribution of the freshwater plume depths that decreased in depth stepwise offshore as the flow of the buoyant plume was restricted by a series of ridge-rubble fields running parallel to the coast. Relative to the 2 m mean ice thickness, the plume layer depth varied from zero under mobile offshore pack ice to 3 m inshore of the third set of ridge-rubble fields.  相似文献   

10.
The distribution of picophytoplankton (0.2–2 µm) and nanophytoplankton (2–20 µm) in the Beaufort Sea–Mackenzie Shelf and Amundsen Gulf regions during autumn, 2002 is examined relative to their ambient water mass properties (salinity, temperature and nutrients: nitrate + nitrite, phosphate, and silicate) and to the ratio of variable to maximum fluorescence, Fv/Fm. Total phytoplankton and cell abundances (< 20 µm) were mainly correlated with salinity. Significant differences in picophytoplankton cell numbers were found among waters near the mouth of the Mackenzie River, ice melt waters and the underlying halocline water masses of Pacific origin. Picophytoplankton was the most abundant phytoplankton fraction during the autumnal season, probably reflecting low nitrate concentrations (surface waters average ~ 0.65 µM). The ratio Fv/Fm averaged 0.44, indicating that cells were still physiologically active, even though their concentrations were low (max Chl a = 0.9 mg m− 3). No significant differences in Fv/Fm were evident in the different water masses, indicating that rate limiting conditions for photosynthesis and growth were uniform across the whole system, which was in a pre-winter stage, and was probably already experiencing light limitation as a result of shortening day lengths.  相似文献   

11.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

12.
The sea ice biota of polar regions contains numerous heterotrophic flagellates very few of which have been properly identified. The whole mount technique for transmission electron microscopy enables the identification of loricate and scaly forms. A survey of Arctic ice samples (North-East Water Polynya, NE Greenland) revealed the presence of ca. 12 taxa belonging to the phagotrophic genus Thaumatomastix (Protista incertae sedis). Species of Thaumatomastix possess siliceous body scales and one naked and one scale-covered flagellum. The presence in both Arctic samples and sea ice material previously examined from the Antarctic indicates that this genus is most likely ubiquitous in polar sea ice and may be an important component in sea ice biota microbial activities.  相似文献   

13.
The large quantities of particles delivered by the Mackenzie River to the coastal Beaufort Sea (Arctic Ocean) have implications for the spatial distribution, composition and productivity of its bacterial communities. Our objectives in this study were: (1) to assess the contribution of particle-associated bacteria (fraction  3 µm) to total bacterial production and their relationships with changing environmental conditions along a surface water transect; (2) to examine how particle-based heterotrophy changes over the annual cycle (Nov 2003–Aug 2004); and (3) to determine whether particle-associated bacterial assemblages differ in composition from the free-living communities (fraction < 3 µm). Our transect results showed that particle-associated bacteria contributed a variable percentage of leucine-based (BP-Leu) and thymidine-based (BP-TdR) bacterial production, with values up to 98% at the inshore, low salinity stations. The relative contribution of particle-associated bacteria to total BP-Leu was positively correlated with temperature and particulate organic material (POM) concentration. The annual dataset showed low activities of particle-associated bacteria during late fall and most of the winter, and a period of high particle-associated activity in spring and summer, likely related to the seasonal inputs of riverine POM. Results from catalyzed reporter deposition for fluorescence in situ hybridization (CARD-FISH) confirmed the dominance of Bacteria and presence of Archaea (43–84% and 0.2–5.5% of DAPI counts, respectively), which were evenly distributed throughout the Mackenzie Shelf, and not significantly related to environmental variables. Denaturing gradient gel electrophoresis (DGGE) revealed changes in the bacterial community structure among riverine, estuarine and marine stations, with separation according to temperature and salinity. There was evidence of differences between the particle-associated and free-living bacterial assemblages at the estuarine stations with highest POM content. Particle-associated bacteria are an important functional component of this Arctic ecosystem. Under a warmer climate, they are likely to play an increasing role in coastal biogeochemistry and carbon fluxes as a result of permafrost melting and increased particle transport from the tundra to coastal waters.  相似文献   

14.
On the basis of classical hydrographic and nutrient analysis, water masses and their spreading in the Northeast Water (NEW) Polynya were investigated from RV Polarstern ARK IX (1993) data. It is shown that a local water body, East Greenland Shelf Water, occupies the top layer in the NEW and that this water is different from Polar Water exported from the Arctic Polar Ocean. Polar Water, as well as the underlying and also imported Knee Water, follows a path crossing the broad East Greenland Shelf diagonally from northeast to southwest but both waters do not enter the NEW Polynya. Intermediate waters in the NEW are also modified locally. A local source of silicate, contributing to an intermediate silicate maximum in the trough system, is identified in the centre of the anticyclonic movement over Belgica Bank. Furthermore, it is confirmed that there is no one-directional through-flow of deeper waters in the trough system. Belgica Trough and Westwind Trough contain two different water types of Atlantic origin, which are not directly related to Return Atlantic Waters. The deeper waters in Norske Trough are supplied from Belgica Trough over a sill of about 250 m depth.  相似文献   

15.
Globally significant quantities of organic carbon are stored in northern permafrost soils, but little is known about how this carbon is processed by microbial communities once it enters rivers and is transported to the coastal Arctic Ocean. As part of the Arctic River-Delta Experiment (ARDEX), we measured environmental and microbiological variables along a 300 km transect in the Mackenzie River and coastal Beaufort Sea, in July–August 2004. Surface bacterial concentrations averaged 6.7 × 105 cells mL− 1 with no significant differences between sampling zones. Picocyanobacteria were abundant in the river, and mostly observed as cell colonies. Their concentrations in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells mL− 1. There were accompanying shifts in protist community structure, from diatoms, cryptophytes, heterotrophic protists and chrysophytes in the river, to dinoflagellates, prymnesiophytes, chrysophytes, prasinophytes, diatoms and heterotrophic protists in the Beaufort Sea.Size-fractionated bacterial production, as measured by 3H–leucine uptake, varied from 76 to 416 ng C L− 1 h− 1. The contribution of particle-attached bacteria (> 3 µm fraction) to total bacterial production decreased from > 90% at the Mackenzie River stations to < 20% at an offshore marine site, and the relative importance of this particle-based fraction was inversely correlated with salinity and positively correlated with particulate organic carbon concentrations. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie River but not in the coastal ocean. Prior exposure of water samples to full sunlight increased the biolability of dissolved organic carbon (DOC) in the Mackenzie River but decreased it in the Beaufort Sea.Estimated depth-integrated bacterial respiration rates in the Mackenzie River were higher than depth-integrated primary production rates, while at the marine stations bacterial respiration rates were near or below the integrated primary production rates. Consistent with these results, PCO2 measurements showed surface water supersaturation in the river (mean of 146% of air equilibrium values) and subsaturation or near-saturation in the coastal sea. These results show a well-developed microbial food web in the Mackenzie River system that will likely convert tundra carbon to atmospheric CO2 at increasing rates as the arctic climate continues to warm.  相似文献   

16.
Gulf menhaden, Brevoortia patronus, which constitutes a major industrial reduction fishery in the USA, spawn across the northern Gulf of Mexico with a focus of spawning about the Mississippi Delta. This species is estuarine dependent; adults spawn over the continental shelf and their larvae are transported, by mechanisms that are presently not well understood, to estuarine nursery areas. Larval gulf menhaden, along with some other surface oriented larval fishes, appear to aggregate along the Mississippi River plume front, while evidence of the ecological consequences of this aggregation in terms of the feeding, growth, and survival of larvae is ambiguous. On an annual scale, Mississippi River discharge is negatively associated with numbers of half year old recruits. Discharge of the Mississippi River and the population recruitment of gulf menhaden may be plausibly linked through the action of the river's plume and its front on the shoreward transport of larvae. Greater river discharge results in an expansive plume that might project larvae farther offshore and prolong the shoreward transport of larvae. An indirect, decadal scale, positive response of recruitment and river discharge is possible, but not certain. Recruitment became elevated after 1975 when river discharge increased and became highly variable. This response might owe to enhanced primary and secondary production driven by nutrient influx from the Mississippi River.  相似文献   

17.
The phytoplankton of the Ross Sea have been intensively studied, in contrast to that of the Amundsen Sea. This study focused on understanding the environmental variables that influence the spatial patterns of assemblages during late summer, 2007, and late spring-early summer, 2008 in the Amundsen and Ross Seas. Blooms of the prymnesiophyte Phaeocystis antarctica, and the silicoflagellate Dictyocha speculum occurred in the southwestern to eastern parts of the Ross Sea, respectively, whereas diatoms dominated in southeastern Ross and the Amundsen Sea. Shallow mixed layers supported the growth of diatoms, but were not the only factor required for diatom bloom development. Modified Circumpolar Deep Water intruded into the subsurface waters (< 200 m) in the southwestern Ross Sea during February 2007, and possibly favored the formation of P. antarctica blooms. Photosynthetic quantum yield data suggest that blooms from the southwestern Ross Sea were approaching stress during January 2008, likely due to iron limitation, in contrast to blooms close to the ice edge in the Amundsen Sea, where iron may be more available to the phytoplankton. A detailed comparison between the Amundsen and Ross Seas may allow a greater understanding of the environmental-induced impacts on phytoplankton distribution and regional biogeochemical cycles.  相似文献   

18.
Spring blooms of bottom ice algae are a common feature of landfast congelation ice in polar regions. Because ice algae are usually associated with a substrate, their population dynamics can be followed with considerable confidence. Although ice algal dynamics are closely related to irradiance, their dynamics and distributions are influenced by other abiotic and biotic factors. Ice algal abundance varies horizontally over all scales examined. Factors such as grazing and nutrient availability may contribute to local and geographic differences. Loss terms for most sea ice assemblages are largely unquantified. Ice algal biomass is most concentrated near the ice-water interface in spring.Environmental factors affecting ice algal abundance and productivity are considered here, emphasizing recent results from several well-studied sites. Biomass accumulation, growth rates and productivity have been documented for spring blooms of bottom interstitial and sub-ice assemblages. On an areal basis biomass accumulation in bottom ice assemblages can be comparable with planktonic systems. At low ambient temperatures and irradiances average specific growth rates (≤ 0.25 d−1) and production rates (≤ 1.0 mg C mg Chl−1 h−1) for ice algae are low. Current methods of measuring productivity are compared. Results are consistently low but variable with little systematic difference among them. At present, apparent differences in productivity between bottom ice assemblages in the Arctic and Antarctic, or among different antarctic assemblages, are so confounded by methodological and other sources of variability that no firm differences can be detected.  相似文献   

19.
An understanding of microbial interactions in first-year sea ice on Arctic shelves is essential for identifying potential responses of the Arctic Ocean carbon cycle to changing sea-ice conditions. This study assessed dissolved and particulate organic carbon (DOC, POC), exopolymeric substances (EPS), chlorophyll a, bacteria and protists, in a seasonal (24 February to 20 June 2004) investigation of first-year sea ice and associated surface waters on the Mackenzie Shelf. The dynamics of and relationships between different sea-ice carbon pools were investigated for the periods prior to, during and following the sea-ice-algal bloom, under high and low snow cover. A predominantly heterotrophic sea-ice community was observed prior to the ice-algal bloom under high snow cover only. However, the heterotrophic community persisted throughout the study with bacteria accounting for, on average, 44% of the non-diatom particulate carbon biomass overall the study period. There was an extensive accumulation of sea-ice organic carbon following the onset of the ice-algal bloom, with diatoms driving seasonal and spatial trends in particulate sea-ice biomass. DOC and EPS were also significant sea-ice carbon contributors such that sea-ice DOC concentrations were higher than, or equivalent to, sea-ice-algal carbon concentrations prior to and following the algal bloom, respectively. Sea-ice-algal carbon, DOC and EPS-carbon concentrations were significantly interrelated under high and low snow cover during the algal bloom (r values ≥ 0.74, p < 0.01). These relationships suggest that algae are primarily responsible for the large pools of DOC and EPS-carbon and that similar stressors and/or processes could be involved in regulating their release. This study demonstrates that DOC can play a major role in organic carbon cycling on Arctic shelves.  相似文献   

20.
We monitored the feeding success (percent feeding incidence at length and mean feeding ratio at length) of Arctic cod (Boreogadus saida) and sand lance (Ammodytes sp.) larvae in relation to prey density, light, temperature and potential predator density under the ice cover of southeastern Hudson Bay in the spring of 1988, 1989 and 1990. Both prey density and light limited larval fish feeding. The relationship between feeding success and actual food availability (nauplii density X irradiance) was adequately described by an Ivlev function which explained 64 and 76% of the variance in Arctic cod and sand lance feeding success respectively. By affecting both prey density and irradiance, the thickness of the Great Whale River plume (as defined by the depth of the 25 isohaline) was the main determinant of prey availability. Arctic cod and sand lance larvae stopped feeding when the depth of the 25 isohaline exceeded 9 m. Limitation of feeding success attributable to freshwater inputs occurred exclusively in 1988, the only time when the depth of the 25 isohaline exceeded the 9 m threshold. The close dependence of larval fish feeding success on the timing of the freshet and plume dynamics suggests a direct link between climate and survival of Arctic cod and sand lance larvae. The actual impact of climate fluctuations and/or hydro-electric developments on recruitment will depend on the fraction of the larval dispersal area of the two species that is affected by river plumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号