首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
舱内爆炸冲击载荷特性实验研究   总被引:10,自引:0,他引:10  
侯海量  朱锡  李伟  梅志远 《船舶力学》2010,14(8):901-907
为探讨舱室抗爆结构设计,采用典型舱室结构进行了舱内爆炸模型实验,研究了舱内爆炸下的冲击载荷及其作用过程,分析了舱内爆炸载荷的强度及舱内爆炸载荷作用下舱室板架结构的失效模式.结果表明:舱内爆炸载荷与敞开环境下的爆炸载荷有较大区别,由于舰艇结构的影响,舱内爆炸下,舱室板架结构承受的冲击载荷除壁面反射冲击波外,在舱室角隅部位还有强度远大于壁面反射冲击波的汇聚冲击波,以及这些冲击波的多次反复作用;舱内爆炸下舱室板架中部结构所承受的初始冲击载荷强度与敞开环境爆炸下壁面反射冲击载荷强度相当,而角隅部位舱内爆炸载荷的强度远大于敞开环境爆炸下壁面反射冲击载荷;舱内爆炸下舱室板架结构的主要失效模式是沿角隅部位发生撕裂失效并发生大挠度外翻变形.  相似文献   

2.
[目的]为研究典型舱内爆炸载荷对加筋板的毁伤特性,将舱内爆炸载荷分为初始爆炸冲击波载荷和准静态气压载荷,利用有限元分析软件LS-DYNA开展爆炸载荷下固支单向加筋板毁伤特性的数值模拟.[方法]主要模拟载荷冲量相等和载荷峰值相等时固支单向加筋板的变形特性,以及加筋板分别在初始爆炸冲击波载荷、准静态气压载荷及2种载荷联合作...  相似文献   

3.
舱室内战斗部爆炸产生的冲击波是舱室结构板架承受的主要载荷之一,舱室内爆冲击波在舱室内部将发生多次反射,并在舱室内部形成持续时间较长的准静态压力,在此过程中舱室板架承受多次冲击波反射载荷。本文以舱室典型加筋板为对象进行夹层板概念设计,选取面板厚度、背板厚度、夹芯壁厚及夹芯间距4个参数作为试验参数,以抗爆综合评价指标最小为目标,采用正交试验优化设计方法得到该加筋板结构在舱室内爆冲击波载荷作用下最优抗爆性能的夹层板结构,并对比最优夹层板与普通加筋板在舱室内爆载荷作用下的响应特征。研究表明,经过优化设计后的夹层板具有更好抵抗冲击波载荷的能力,正交试验设计能较好适用于夹层板结构优化设计。  相似文献   

4.
舱室内战斗部爆炸产生的冲击波是舱室结构板架承受的主要载荷之一,舱室内爆冲击波在舱室内部将发生多次反射,并在舱室内部形成持续时间较长的准静态压力,在此过程中舱室板架承受多次冲击波反射载荷。本文以舱室典型加筋板为对象进行夹层板概念设计,选取面板厚度、背板厚度、夹芯壁厚及夹芯间距4个参数作为试验参数,以抗爆综合评价指标最小为目标,采用正交试验优化设计方法得到该加筋板结构在舱室内爆冲击波载荷作用下最优抗爆性能的夹层板结构,并对比最优夹层板与普通加筋板在舱室内爆载荷作用下的响应特征。研究表明,经过优化设计后的夹层板具有更好抵抗冲击波载荷的能力,正交试验设计能较好适用于夹层板结构优化设计。  相似文献   

5.
反舰导弹对水面舰艇最主要的攻击模式是它侵彻舷侧后在舱内爆炸。论文系统总结了在反舰导弹舱内爆炸作用下舰船舱室结构毁伤机理的研究进展,论述了两种最重要的舱内爆炸载荷—高速破片群和舱内爆炸压力,分析了船体材料本构关系和模型的发展历程,回顾了在爆炸载荷作用下舰船板/加筋板/舱室动态响应的规律和毁伤模式。最后提出了反舰导弹作用下舰船结构毁伤机理的研究建议。  相似文献   

6.
文章设计了典型多舱结构模型,开展了多舱结构在舱内爆炸作用下的毁伤特性实验,测量了爆炸破片和冲击波载荷,并用高速摄像机记录了爆炸毁伤过程,分析了塑性变形、毁伤模式等结构毁伤特点。结果表明:(1)舱内爆炸作用下结构受爆炸冲击波与破片群联合作用,且舱内爆炸载荷包含明显的准静态压力段;(2)紧贴战斗部的舱壁发生花瓣状破口并将压力泻到相邻舱室,较近结构受冲击波与破片联合作用效果明显;(3)加强筋较好地限制了爆炸破口,但变形梯度较大的地方易产生裂纹;(4)内爆炸作用下普通舱门是舱室结构薄弱环节,须重点关注。  相似文献   

7.
舱室内爆冲击波载荷特性及影响因素分析   总被引:1,自引:0,他引:1  
《舰船科学技术》2016,(3):43-48
战斗部爆炸产生的冲击波载荷是舰船舱室结构的主要载荷之一,舰船舱室内爆炸载荷准确与否是正确计算板架响应的关键。舰船舱室内爆冲击波在舱室内部多次反射,舰船舱室内部形成持续时间较长的准静态压力过程,在此过程中舱室板架承受多次冲击波反射载荷。本文采用实验验证数值程序计算舱室内爆炸冲击波的可靠性,在此基础上采用数值方法研究舱室内爆冲击波壁面反射特性及爆点位置对舱室内爆载荷的影响。计算结果表明舱室内爆各壁面反射冲击波明显,爆点位置仅对爆点附近区域冲击波特性有影响,对远离爆点区域的冲击波特性无明显影响。  相似文献   

8.
战斗部爆炸产生的冲击波载荷是舰船舱室结构的主要载荷之一,舰船舱室内爆炸载荷准确与否是正确计算板架响应的关键.舰船舱室内爆冲击波在舱室内部多次反射,舰船舱室内部形成持续时间较长的准静态压力过程,在此过程中舱室板架承受多次冲击波反射载荷.本文采用实验验证数值程序计算舱室内爆炸冲击波的可靠性,在此基础上采用数值方法研究舱室内爆冲击波壁面反射特性及爆点位置对舱室内爆载荷的影响.计算结果表明舱室内爆各壁面反射冲击波明显,爆点位置仅对爆点附近区域冲击波特性有影响,对远离爆点区域的冲击波特性无明显影响.  相似文献   

9.
舱内爆炸准静态压力载荷是反舰导弹半穿甲战斗部最重要的破坏载荷之一。基于炸药爆炸过程中的化学反应过程和状态方程开展了准静态压力的理论分析与预测,并通过模型试验验证预测公式的正确性,讨论了在有无氧气环境下的准静态压力。研究结果表明:(1)舱内爆炸与自由场爆炸有较大的不同,除了多次反射的冲击波外,还存在准静态压力;(2)基于状态方程提出的准静态压力计算方法具有一定的预测能力;(3)需要氧气支撑的后续燃烧效应对准静态压力的形成至关重要。研究结果能为舱内爆炸作用下的舱室毁伤防护机理的揭示和防护设计提供有效支撑。  相似文献   

10.
李营  李延  刘海燕  王伟  方岱宁 《船舶力学》2021,25(7):927-934
舱内爆炸与自由场爆炸载荷特点明显不同,威力比同等当量下的自由场爆炸大得多.本研究制作了内爆炸载荷发生装置,开展了不同方板在舱内爆炸作用下的动态响应与损伤特性试验,对比了舱内爆炸载荷特点、板的塑性变形、板的损伤特点,讨论了无量纲数的适用性.研究表明:(1)舱内爆炸作用下角隅处的冲击波压力峰值明显大于其他区域,但各测点的冲量趋于一致;(2)炸药相对泄爆孔位置的不同,主要通过影响准静态压力改变方板的变形,初始冲击波的影响相对较小;(3)舱内爆炸作用下固支方板的破坏模式主要为Ⅰ类破坏和Ⅱ类破坏,即整体大塑性变形破坏和边缘拉伸失效.  相似文献   

11.
角隅结构对舱内爆炸载荷影响的实验研究   总被引:2,自引:0,他引:2  
在空间较封闭的舱室中发生爆炸时,舱室板架结构所承受的载荷包括壁面反射冲击波和角隅部位的汇聚冲击波,这种载荷特性将直接影响到结构的破坏形式。采用双层舱室结构模型进行了不同装药量的舱内爆炸实验,研究了三种不同的角隅连接结构型式对冲击波在角隅汇聚情况的影响。基于图象法(Method of Images)解释了冲击波在角隅的汇聚现象,采用数值计算方法分析舱内爆炸冲击载荷与结构的相互作用。结果表明:舱室角隅位置的连接结构型式只对小药量工况下的舱内爆炸冲击波流场有一定的影响,其中相对平缓过渡连接的结构型式一定程度上减缓了冲击波在角隅的汇聚。当初始冲击波强度较大时,结构型式的改变对冲击波的角隅汇聚影响不大。舱室内形成的反射冲击波高压区将首先作用在横舱壁中部位置,基于这种传播路径和特性,横舱壁上设置适当的开孔将有效地降低舱内的冲击波汇聚压力。  相似文献   

12.
[目的]炸药在自由场、舱室内爆炸时,载荷特征存在很大差别。[方法]模拟不同药量炸药在自由场、密闭舱室与开口舱室中爆炸的过程,并对比数值计算载荷与亨利奇公式计算结果,分析炸药在密闭舱室以及开口舱室内的载荷特征。[结果]研究表明,在密闭舱室中,冲击波在角隅处形成汇聚压力,其在角隅处的冲击波总冲量约为板架中心处冲击波总冲量的1.45倍,而开口舱室角隅处的压力并不明显;与密闭舱室相比,开口舱室的反射压力峰值与准静态压力值均较小;开口舱室的冲击波总冲量约为密闭舱室的20%;密闭舱室板架的失效模式为板架沿加强筋发生塑性变形,沿角隅发生撕裂;开口舱室角隅处并未发生撕裂,但开口边缘处发生了外翻变形;只考虑冲击波作用时,采用数值模拟方法得到的板架中心最大变形值与简化计算方法得到的值比较接近,但在同时考虑冲击波、准静态压力作用时,误差较大。[结论]研究结果可为舱室内爆载荷的特征与板架毁伤规律提供较为合理的预报。  相似文献   

13.
战斗部舱内爆炸对舱室结构毁伤的实验研究   总被引:3,自引:0,他引:3  
为探讨舰船抗爆抗穿甲防护结构设计,利用导弹模拟战斗部进行了舱室内部爆炸模型试验,研究内爆条件下高速破片和爆炸冲击波对舱室结构的联合毁伤效应,分析舱内爆炸环境下舱室板架结构的典型破坏模式.结果表明:模拟战斗部内爆载荷作用下舱室结构的整体变形以冲击波破坏为主;战斗部破片对舱壁板架产生侵彻穿孔破坏,并在近爆区板架上形成了破口密集区域;单个破口对舱室整体结构破坏影响不大,而密集破口区在后续冲击波作用下会发生撕裂,形成大破口,影响舱室整体结构性能.该研究结果,可用于指导舰船防护结构的设计.  相似文献   

14.
[目的]为提高舰船在舰炮攻击下舱室损伤特性的等效性,更好地反映实船舱内炮弹爆炸对船体结构、设备和人员的毁伤特性,[方法]采用实船舱室模型进行炮弹舱内静爆试验,以得到舱内静爆冲击波的超压、准静态超压、结构应变等数据处理方法,最终得到实验爆源、舱室结构、设备和人体模型的简化方法及设计制作要求。[结果]根据试验结果,总结出局部花瓣破口(Ⅰ)、边界剪切断裂(Ⅱ)和板架大变形(Ⅲ)3种舱室结构的损伤模式及其判据。其中,新提出的损伤模式Ⅰ的判据为爆距小于0.25倍板架宽且爆源能量大于板的弯曲塑性变形能。[结论]该研究将前人总结的矩形板架爆炸变形破损模式进行了拓展,所得结果可为舰船抗爆校核评估与防护设计提供参考。  相似文献   

15.
舰船结构在受到高强度爆炸载荷作用时的破坏形式主要是板架的塑性大变形和撕裂。对四边约束矩形板在爆炸冲击波载荷下的塑性大变形响应进行了理论分析和试验研究。基于板的大挠度变形理论和能量守恒原理,建立了矩形板在爆炸载荷作用下发生塑性大变形的弹塑性分析方法。将理论计算与试验及数值计算进行对比,表明弹塑性分析方法有较好的计算精度和适用性。可用于计算舰船局部结构对舱内爆炸冲击波的响应,为舰船的抗爆设计提供理论依据。  相似文献   

16.
[目的]为了研究DDG 1000驱逐舰所采用新型舷侧泄爆结构中泄爆薄板厚度对泄爆效果的影响,[方法]首先,通过实验数据验证仿真方法的可靠性;然后,运用有限元分析软件建立泄爆舱室的仿真模型,分析薄板泄爆结构的泄爆原理,研究不同薄板厚度下舱室破坏及舱内载荷的变化情况;最后,通过函数拟合,得到比冲量和挠度随泄爆薄板厚度变化的二次函数模型。[结果]结果表明:舱室的破坏失效最先发生在薄板和舱壁的连接处,并逐渐向舱壁边角扩大,且薄板厚度越小,越容易形成泄爆口;泄爆口的形成表现为薄板整体飞出舱体;泄爆结构的存在对初始冲击波超压的影响不大,但能有效降低舱内的准静态压力和比冲量;造成防护舱壁变形的主要因素是前期的初始冲击波和反射冲击波,而造成防护舱壁最终破坏的主要因素是长时间作用的准静态压力。[结论]研究结果可为舰船舷侧舱室等结构开展泄爆设计提供一定的参考。  相似文献   

17.
WENO格式精度对舱室内爆炸载荷影响规律研究   总被引:1,自引:0,他引:1  
舰船舱室内爆炸载荷主要包含瞬态多峰值冲击波和持续时间较长的准静态超压,为了研究WENO格式精度对舱室内爆炸载荷影响规律,基于Fortran平台,采用3阶、5阶、7阶WENO有限差分格式,开发了高精度舱室内爆炸载荷三维数值计算程序。采用Sod激波管、双爆轰波碰撞、激波与熵波相互作用等经典算例初步考察了各数值格式的计算性能。开展了封闭舱室、泄压舱室内爆炸载荷数值计算,探讨了WENO格式精度对舱室内爆炸载荷影响规律。研究表明:WENO格式精度对舱室内爆炸冲击波载荷影响较大,对舱室内爆炸准静态超压载荷影响较小。  相似文献   

18.
以典型舰船舱室为研究对象,分别建立对应2种打击模式下的多舱室结构模型。采用有限元分析软件,模拟多个舱室结构在内部爆炸冲击载荷作用下的变形和破坏过程,对炸药在舱内爆炸的毁伤特点以及舱室结构的破坏机理进行分析。分析结果表明,舱室结构破坏受炸药装药量、舱壁厚度、初始破口等因素影响,且初始破口对最终破坏效果的影响随着装药量的增加而降低。在对内部遭受较大装药量打击的舰船进行结构毁伤评估时,对于中心处起爆的情况,在进行多舱室建模时,可近似忽略导弹破口的影响,从而方便建模和计算过程。  相似文献   

19.
由于结构抗爆性能的要求越来越高,传统的加筋板结构不能使船舶结构性能得到明显的提高,因此以典型船舶上层建筑为分析对象,针对上层建筑前端壁结构开展轻量化设计,利用U型夹层板代替普通加筋板,同时开展有限元数值仿真分析,讨论U型夹层板的抗爆性能。结果表明,爆炸载荷作用下,由U型夹层板构成的上层建筑前端壁结构在延伸区域的变形相对较小,主要变形位置由板架中部转移到板架顶部,吸能情况也得到改善。U型夹层板结构提高了舱室内部人员与设备的安全性,表现出优良的抗爆性能,将其应用于船舶上层建筑,对降低船舶重心、提高结构性能具有重要意义。  相似文献   

20.
为了研究冲击波和破片联合作用下船舶舱段的毁伤效应,首先在ANSA中建立舱段的有限元模型,设定材料模型、模拟舷侧破口、建立战斗部模型和耦合模型;之后在AUTODYN中对比分析了爆炸冲击波单独作用以及冲击波、破片联合作用2种情形下,船舶舱段的舱内爆炸载荷特性、舱室结构等效塑性应变及位移等数值结果的差异。结果表明:考虑冲击波和破片的联合作用时,冲击波压力曲线的前期趋势与冲击波单独作用下大致相同,但由于冲击波从破口发生泄漏,舱室内压力会较早达到准静态压力状态。同时,爆炸当舱的更多区域出现了大破口,毁伤主要表现为角隅大塑性变形以及边缘大面积撕裂,甲板和舷侧的最大位移和等效塑性应变也较冲击波单独作用大得多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号