首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
汽车横向传动轴的轮端万向节一般通过中心螺母与轮毂轴紧固连接,中心螺母紧固的效果与轮毂轴承的工作性能密切相关.如果中心螺母的拧紧扭矩过小,则轮毂轴承的轴向预紧力不足,轮毂轴承的寿命可能会缩短;如果中心螺母拧紧扭矩过大,又可能会存在横向传动轴外万向节柄部拉伸过载的风险.阐述了汽车横向传动轴外万向节与轮毂轴连接扭矩的控制方法,实例分析了汽车横向传动轴外万向节与轮毂之间装配时使用扭矩转角控制法的优越性.  相似文献   

2.
系统研究了商用车后驱动桥主锥轴承预紧的计算、安装、调整和检测方法。结合整车道路载荷谱,优化计算轴承轴向预紧载荷,提升了总成设计寿命;通过试验验证了轴承预紧力与轴向夹紧力、轴向夹紧力与螺母紧固扭矩的关系,为主锥总成装配中螺母紧固扭矩的确定提供了依据;验证了圆锥滚子轴承转动摩擦阻力矩与轴向载荷的线性关系,并试验研究了多个因素对摩擦阻力矩的影响,对轴承预紧的在线检测方法提出了改进要求。  相似文献   

3.
汽车后桥主减速器主齿轴承的预紧参数,对整个驱动桥的使用性能影响极大,要保持装配参数在使用过程中基本不变,这就需要利用波形隔套即弹性隔套的载荷特性曲线P-δ作用。文章从力学上对主动齿轮轴承的预紧进行了详细的分析和计算,以及主减速器的装配性能进行详细分析,并提出了主动齿轮轴承预紧力的确定原则,同时为波形隔套的设计提供了理论依据。  相似文献   

4.
分析了承载13吨的转向驱动桥轮边结构,校核了轮毂轴承、半轴等关键零部件的强度,计算了转向驱动桥桥壳的应力,完备了大吨位汽车起重机转向驱动桥的设计资料,为其它类型的工程机械转向驱动桥设计提供了可借鉴的模式。  相似文献   

5.
1 汽车轮毂轴承的发展 汽车轮毂轴承的作用主要是承受汽车的质量及为轮毂的传动提供准确的向导.轮毂轴承既承受径向载荷又承受轴向载荷,是一个非常重要的安全件.原来国产车大多仍采用传统的2套单独的圆锥滚子轴承或角接触球轴承,这种结构在汽车装配时要经过调整游隙.预紧.加脂等诸多工序,人为控制因素较多.装配难度较大,从而造成汽车装配线加长,成本过高且可靠性差,难以适应激烈的市场竞争.近年来,随着前置前驱动轿车的发展,轮毂轴承发生了很大变化.尤其是国外知名的汽车生产厂家与轴承制造商联合研发,新型轮毂轴承单元不断涌现.  相似文献   

6.
汽车轮毂芯轴装配后,偶发断裂事故。为了分析断裂性质及原因,对汽车轮毂芯轴连接接头进行装配预紧力计算校核分析、芯轴断口SEM分析、材料金相组织检查及成份光谱分析,结果发现:导致汽车轮毂芯轴断裂的根本原因是汽车轮毂材料特性不适合热加工工艺,导致在加工过程中产生内应力过大,且在后续加工中未得到有效消除,在装配的预紧力综合作用下,轮毂芯轴产生脆性延迟断裂。针对根本原因,制定了有效的设计预防措施。  相似文献   

7.
我司是国内驱动桥生产的专业厂家,产品销往国内外,市场占有率大。汽车轮毂轴管是后驱动桥的重要零部件之一,焊接在桥壳两端组成后驱动桥壳,用于支撑和安装全浮式半轴、主减速器总成等零部件,主要用在载货汽车上。轮毂轴管上装配有轴承、油封等精密零件,承载着车身及车载货物的重量,在汽车行驶过程中,轮毂轴管质量的好坏影响着轴承和油封的使用寿命,从而影响整车行驶的平稳性和安全性。在大批量生产时,为了保证轮毂轴管各外圆柱面同轴度的快速检测要求,保证产品质量满足客户需求,设计一种快速检测检具就显得尤为重要。  相似文献   

8.
刘佳 《上海汽车》2010,(3):44-47
对轴承游隙和预紧力的选择做了深入研究,详细分析了游隙与预紧力之间的关系和选取原则,并以某国产B级车型二代后轮毂轴承为例,详细分析了其游隙和预紧力的优化过程,并最终提高了该轴承的寿命和整车性能。  相似文献   

9.
轮毂是车桥中的重要零部件,要求具有高承载和高抗扭矩能力。本文针对特种与非公路车桥使用的轮边总成的结构特点,探讨了其轮毂的Pro/E建模,并对其进行有限元分析以及优化设计。车桥(也称车轴)通过悬架和车架(或承载式车身)相连,两端安装汽车车轮。其功能是传递车架(或承载式车身)与车轮之间各方向作用力。非驱动桥由桥壳总成、轮边总成、制动器以及其他一些零部件组成。  相似文献   

10.
汽车转向轮及中、后轮轮毂轴承的紧度直接影响着汽车的使用性能.若轮毂轴承过紧,车轮转动阻力就会增大,摩擦损失增大,滑行性能降低,且轴承容易损坏;若轮毂轴承过松,车轮在滚动中就会产生摇摆,导致轮胎及相关机件不正常磨损.特别是转向轮轮毂轴承过松,方向盘游隙就增大,车辆转向的灵敏性与行驶的稳定性就会降低.因此,在汽车维护中,应重视轮毂轴承紧度的检查与调整.  相似文献   

11.
陈亚南  陈良武  赵磊  马琳 《隧道建设》2020,40(Z1):419-422
为解决盾构主驱动密封系统在掘进过程中失效,造成主驱动、主轴承或齿轮损坏的问题,以某系列土压平衡盾构主驱动密封系统的结构和工作原理为基础,首先,采用适用于现场施工条件的主驱动密封气压检测技术,即分别向内、外密封各腔体内通入100 kPa压缩空气,保压30 min后,压降值在允许范围内为合格,超出为不合格,进而判定主驱动密封是否失效。然后,结合现场经验和理论分析,从设计、装配、操作、磨损4个方面对密封失效的原因进行分析,得出装配不合格、操作不当和正常磨损等问题均是目前最常见的密封失效原因。最后,针对密封失效原因,分别从设计、安装、操作、日常维保等各个环节进行预防把控,以保证主驱动密封系统达到设计使用寿命。  相似文献   

12.
某车型在进行结构耐久过程中出现了异响问题,经试验人员检测,该异响是轮毂轴承处产生,本文通过对轴承的设计原理,异响产生的机理进行分析,同时分析、对标了轮毂轴承在整车、零件上的装配保证能力,最终将该异响根本原因锁定在整车拧紧力矩问题上,经设计改善,车辆的整个耐久路试未有轮毂轴承异响问题发生,问题得到解决。为后续轴承异响问题排查提供参考。  相似文献   

13.
本文通过对比分析国内外双列圆锥滚子汽车轮毂轴承产品系列的结构特征,参考目前国内(单列)圆锥滚子轴承设计方法,分析了双列圆锥滚子汽车轮毂轴承结构设计方法。  相似文献   

14.
本文阐述了在发动机可靠性试验过程中遇到的CW-系列盘式电涡流测功机失效和损坏情况,通过故障诊断、失效分析判断出测功机深沟球轴承损坏致使轴承座孔严重磨损,测功机无法正常运行。试验人员在轴承座孔修复、轴承选型、装配间隙调整及动平衡处理上进行了大量的工作,修复后的测功机运行良好,能满足发动机台架可靠性要求。  相似文献   

15.
轮边驱动电机采用轮毂电机,实现四轮独立驱动,方便汽车动力学性能的控制。对于电动客车,轮边电机驱动以其轻量化、传递效率高等优势正在取代中央直驱的方式,成为现在研究的热点。这种驱动方式取消了离合器和变速器等,驱动电机安装在车轮旁边,结构空间和重量得以大幅度降低电。文章以四轮独立驱动的轮毂电机电动客车为研究对象,通过驱动转矩的合理分配,保证其有最佳的动力性和经济性。  相似文献   

16.
由于传统制造工艺在复杂曲面和集成化加工的局限性,导致方程式赛车轮毂的多功能集成化一直被制约,以至于传统赛车轮毂总成普遍存在体积硕大、重量大、传动效率低等问题。文章基于集成化设计原则,在保留传统赛车轮毂总成所需功能的前提下,改变赛车外球笼、轮毂、轮辐等的结构以进行集成化设计从而得到多功能集成化赛车轮毂。所获得的集成化赛车轮毂体积重量明显减小且传动效率明显提高,达到了通过集成化以实现轻量化的目标。  相似文献   

17.
本文介绍了现有驱动桥壳压装工作台的结构及工作原理,对冲压焊接式桥壳半轴套管与桥壳本体之间的两种主要固定连接方式进行了比较。给出了驱动桥壳压装工作台控制系统的硬件与软件的设计。将PLC应用于驱动桥壳压装工作台控制系统中,使得驱动桥壳半轴套管压装控制过程更加精确,产品质量和生产效率大大提高。  相似文献   

18.
轮毂是汽车承载的最重要的安全部件之一,受力复杂。本文基于现代设计方法,利用PRO/E软件建立轮毂的三维实体模型,通过Hypermesh及ABAQUS软件综合完成轮毂的有限元分析,最终确定某后桥用轮毂结构,并为后续该轮毂的优化设计提供了一定的理论依据。  相似文献   

19.
针对轮毂电机分布式驱动越野车辆在狭小空间快速机动的需求,设计了一种分层结构的原地转向控制策略。基于动力学原理分析了各轮载荷、附着条件对原地转向横摆速度的影响机理,并搭建原地转向运动学模型,上层采用模型预测控制算法设计原地转向理想轨迹以及期望的横摆角速度,开发基于PI滑模控制的横摆运动跟踪算法,通过补偿转向横摆力矩以提高方向角控制的鲁棒性和稳定性,下层以最优轮胎利用率为目标,设计二次规划算法优化分配各轮附加横摆力矩。dSPACE硬件在环测试结果表明,所提出的控制算法可在保证稳定性的前提下实现原地转向,大幅提高了车辆的转向机动性,在方向盘动态输入仿真中,车辆最大转弯半径为0.157 m,转向中心的最大偏移量为3.610 m;同时,驾驶员能对转向过程进行闭环控制,实现了原地转向过程中横摆速度的实时调节。  相似文献   

20.
4WD汽车应用粘性联轴器分析   总被引:3,自引:0,他引:3  
粘性联轴器这一新装置以其独有的特性在四轮驱动汽车上得到广泛应用,粘性联轴器一经确定结构,即可通过转速差自动调节传递转矩的特性,分析了四轮驱动汽车采用粘性联轴器的可能性,介绍了采用粘性联轴器连接的四轮驱动形式和工作原理,阐述了汽车速度,轮胎滑移率对粘性联轴器转速差的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号