首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
文章依托隆百高速公路橡胶沥青混凝土复合式路面工程,对基质沥青的种类、橡胶粉的掺量以及基质沥青与橡胶粉的加工温度、反应时间等橡胶沥青性能的主要影响因素进行了试验研究。结果表明:基质沥青与橡胶粉的配伍性是影响橡胶沥青储存稳定性及相关技术性能最重要的因素。  相似文献   

2.
橡胶沥青作为一种新型的道路材料,具有降低路面噪音、提高行驶安全性与舒适性等优异性能。文章介绍了橡胶沥青的优点,分析了影响橡胶沥青及橡胶沥青混凝土质量的因素,并对橡胶沥青应用于公路建设和养护所存在的问题进行了探讨。  相似文献   

3.
文章结合国内外采用的橡胶沥青评价体系,采用正交试验法对橡胶沥青材料性能的不同影响因素进行分析,得出橡胶沥青的最佳制备方案。并通过橡胶沥青与基质沥青及SBS改性沥青性能的对比,验证橡胶沥青材料具有明显的优化效果。  相似文献   

4.
文章以隆百高速公路橡胶沥青复合式路面工程为背景,介绍了薄层橡胶沥青复合式路面及其作用机理,阐述了薄层橡胶沥青复合式路面施工的质量影响因素,并从拌和、运输、摊铺、碾压、接缝等方面探讨了薄层橡胶沥青混凝土路面施工过程的质量管理措施。  相似文献   

5.
文章应用灰色关联度分析理论,分别从胶结料和级配、油石比及空隙率两个角度对橡胶沥青混合料高温性能影响因素进行敏感性分析,找出评价橡胶沥青混合料高温性能的主要指标,为高温地区选择橡胶沥青混合料提供参考。研究结果表明,胶结料中的橡胶沥青的177℃粘度与级配中的9.5mm筛孔通过率和车辙试验的动稳定度的关联程度最好,与实际情况基本吻合,说明灰色关联度分析方法是一种简单有效的分析橡胶沥青混合料高温性能影响因素的方法。  相似文献   

6.
为研究橡胶沥青碎石封层性能影响因素,探讨其在养护工程中的应用效果,文章结合正交试验设计方法,进行了直剪试验与单轴贯入试验,分析了橡胶沥青洒布量、碎石撒布量及碎石加热温度对橡胶沥青碎石封层性能的影响,并对其应用效果展开分析.结果表明:随沥青洒布量及碎石撒布量的增加,橡胶沥青碎石封层的抗剪强度与极限破坏荷载出现先增大后减小...  相似文献   

7.
文章为掌握橡胶粉细度和掺量对橡胶沥青感温性能的影响,将针入度指数PI、粘温指数VTS和复数模量指数GTS用于评价橡胶沥青感温性能的可靠性,进而根据推荐指标对不同橡胶粉细度和掺量橡胶沥青进行感温性能试验研究。结果表明:采用PI、VTS和GTS评价橡胶沥青感温性能时其可靠性依次增强,推荐采用GTS作为感温性能评价指标;橡胶粉细度和掺量增加时橡胶沥青感温性能逐渐被改善,且细度超过60目后改善作用增强,掺量超过20%后改善作用降低;橡胶粉细度和掺量均对橡胶沥青感温性能有显著影响。  相似文献   

8.
为能够正确认识胶浆对橡胶沥青混合料路用性能的影响,便于在工程实施过程中准确确定橡胶沥青胶浆体系组成即粉胶比,文章分别对不同粉胶比下沥青混合料的高温、低温、水稳定性三项路用性能进行了室内试验研究,并对所得数据进行了详细的数理统计分析,确定了工程用适宜的粉胶比范围。分析结果表明粉胶比变化对橡胶沥青混合料路用性能有显著影响。  相似文献   

9.
橡胶沥青的粘度是影响橡胶沥青混合料路用性能的关键因素,粘度过低会影响其抵抗高温和水损害的能力。文章根据布氏粘度计测试结果,分析了不同胶粉掺量、温度、转速对橡胶沥青粘度的影响,并评价了在最佳胶粉掺配比例下的橡胶沥青混合料路用性能。  相似文献   

10.
为了研究橡胶粉掺量、剪切时间、剪切温度、硫添加量等四个因素对橡胶沥青结合料性能的影响,文章采用正交试验对9种不同条件的橡胶沥青结合料进行高温和低温性能试验。由试验结果分析可知:废弃轮胎橡胶粉具有良好的柔韧性和变形能力,可以有效改善沥青结合料的高温和低温性能;硫的掺入可以有效改善橡胶沥青结合料的拌和均匀性,但会降低其高温和低温性能;橡胶粉掺量为20%、剪切时间60min、剪切温度180℃、硫掺量〈1%时,橡胶沥青结合料的高温和低温综合性能达到最优。  相似文献   

11.
为了研究橡胶沥青混合料的施工性能,文章对不同旋转粘度的橡胶沥青混合料的马歇尔体积参数进行了研究,并通过试验模拟分析高温生产工艺对橡胶沥青混合料老化性能的影响。试验结果表明:不同粘度的橡胶沥青对应不同的拌和温度,短时间的存储有利于提高橡胶沥青混合料的水稳定性及高温稳定性。  相似文献   

12.
排水性沥青路面兼具降噪与排水的功能,但其多孔结构对沥青混合料的路用性能有不利影响。为了保障排水沥青混合料的性能,发挥废弃橡胶粉改性沥青的经济环保优势,文章提出利用高黏改性剂对橡胶沥青进行改性。通过试验对比橡胶沥青混合料与橡胶高黏沥青排水混合料的各项性能后发现,高黏排水沥青混合料的水稳定性、抗车辙性能、浸水飞散性能均远远优于橡胶沥青混合料,并且渗水性能良好。在实体工程中,橡胶高黏沥青排水路面压实度、摩擦系数、渗水系数、平整度等性能满足工程技术要求。  相似文献   

13.
相较普通沥青而言,以废旧轮胎作为改性剂加工完成的复合改性橡胶沥青,以其优异的抗老化、耐高温、抗疲劳等性能在公路工程的建设中得到了推广应用,但橡胶沥青混合料生产工艺和配合比设计不统一等问题,影响了沥青混合料的路用性能,也造成了材料的浪费。本文依托实体工程,对橡胶沥青生产工艺、混合料生产及施工工艺等方面进行进一步论述,提出对橡胶沥青生产质量控制方法,建议橡胶沥青混合料宜采用间断级配,给出了工程设计级配范围,系统总结了橡胶沥青混合料的施工工艺要点,在实体工程中进行了应用,可为类似工程项目的建设提供借鉴参考。  相似文献   

14.
为了评价高弹粗糙橡胶颗粒沥青混合料(HRRAM)中不同掺量的橡胶颗粒对混合料路用性能的影响,文章采用二次双面马歇尔成型试验方法对不同橡胶颗粒掺量(橡胶颗粒质量与矿料质量之比为0%、1.5%、2.5%、3.5%)的HRRAM进行系统优化配合比设计,并分别对沥青混合料的高温性能、水稳定性能、低温抗裂性能以及抗渗性能进行了试验研究。试验结果表明:橡胶颗粒的掺量控制在1.5%~2.5%,HRRAM具有更显著的路用性能。  相似文献   

15.
由于橡胶粉的胎源选择、生产设备及生产工艺差异较大,因此由不同产地的橡胶粉制备的橡胶沥青的性能差异较大。本研究依托崇左至水口高速公路项目采用不同产地、不同细度、不同掺量的橡胶粉分别制备橡胶沥青,通过70℃高温车辙试验研究橡胶沥青混合料的高温性能。结果表明:胶粉产地对制备的橡胶沥青混合料性能影响较大;采用40目左右的胶粉制得的橡胶沥青混合料高温性能最好;在一定范围内随着胶粉掺量的提高,橡胶沥青混合料性能逐渐提高。  相似文献   

16.
活性橡胶是一种新型沥青改性材料,能有效消耗废旧橡胶和磷矿工业废弃物。选择应用较为广泛的70#基质沥青、SBS性沥青,对掺加活性橡胶前后的沥青胶结料常规技术指标进行对比研究。在此基础上,通过系统的室内性能试验,进行掺加活性橡胶对普通沥青连续级配混合料与SBS改性沥青断级配混合料的性能影响分析。研究结果表明,掺入活性橡胶后,70#基质沥青与SBS改性沥青胶结料针入度、延度明显降低,普通沥青连续级配沥青混合料与SBS改性沥青断级配混合料的高温稳定性、抗水损害性能和低温抗裂性能得到改善。  相似文献   

17.
将废旧轮胎加工成粉末状,与基质沥青按照一定的比例混合搅拌制备成橡胶沥青,不仅使废旧轮胎得到了再生利用,而且可使橡胶沥青的性能得到改善。文章研究了橡胶粉粒径对沥青性能的影响,表明采用针入度评价橡胶沥青值得进一步商榷,同时胶粉细度并非越细越好。  相似文献   

18.
文章为探究不同温拌剂对橡胶改性沥青性能的影响,选用Aspha-min、Sasobit及EWMA-1三种不同类型的温拌剂掺入到橡胶改性沥青中,通过布氏黏度试验、DSR试验及BBR试验分析了温拌剂对橡胶沥青的黏度、高温性能及低温性能的影响。结果表明:三种温拌剂均具有一定的降黏能力,且EWMA-1温拌剂的降黏效果最好,EWMA-1温拌剂橡胶改性沥青的拌和温度为171℃~179℃,压实温度为160.1℃~163.4℃;Saobit温拌剂可提高橡胶沥青的高温性能而劣化其低温性能,不适于北方冬寒地区使用,EWMA-1温拌剂可提升橡胶沥青的低温性能,而Aspha-min温拌剂对橡胶沥青的高低温性能影响均不大。  相似文献   

19.
为验证国产CTOR新型胶粉干法橡胶沥青的性能,对CTOR新型胶粉干法橡胶沥青进行飞散试验验证。首先使其与纯胶粉、CTOR干法橡胶沥青进行了对比,其次与其他橡胶沥青工艺进行了对比,最后对其存储性的长短进行了探究;同时也对其路用性能进行了测试。结果显示,CTOR新型胶粉干法橡胶沥青不仅提高了性能,较之其他橡胶沥青还存在巨大优势,也优化了施工工艺。  相似文献   

20.
为研究不同因素(RAP掺量、压实温度、温拌剂掺量)对温拌再生沥青混合料性能的影响,设计3种RAP掺量(0、20%、40%),压实温度(100℃、120℃、140℃),温拌剂掺量(0、2%、4%)的正交试验,采用极差、方差分析法计算了不同因素对再生沥青混合料性能的影响程度,分析了影响因素与性能指标之间的显著性。结果表明:压实温度对再生沥青混合料空隙率影响较为显著,RAP掺量、温拌剂掺量影响程度次之;三种因素对再生沥青混合料的性能影响具有差异,应根据不同的控制目标确定因素水平;再生沥青混合料空隙率、劈裂抗拉强度受RAP掺量、压实温度、温拌剂掺量的影响更显著,稳定度与这些因素之间关系不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号