首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种视频交通流检测场景中的自适应道路结构提取算法   总被引:1,自引:0,他引:1  
为了保证视频交通流检测系统在检测场景变动时检测结果的正确性和有效性,文章提出了一种视频交通流检测场景中的自适应道路结构提取算法,以便适时调整检测区域的位置和大小。算法选用直线拟合车道线,并以车道线组合构造道路结构模型。在场景变化时,算法通过霍夫变换检测变化后的车道线,然后利用匹配误差和消失点约束对检测结果进行校验和修正,最终提取出正确的道路结构信息。实验结果表明,该算法在白天正常天气下提取正确率达99.1%,是一种有效可行的道路结构提取算法。  相似文献   

2.
针对车道线检测存在检测精度不够高、多峰值检测、受噪声干扰严重的问题,设计了道路图像前处理算法和目标约束(Target Constraint Range,TCR)算法结合的新型车道线检测算法。对灰度化的图像进行改进的中值滤波除噪,再基于最大类方差法,用Canny算法提取车道线边缘。结合前处理算法,TCR算法通过目标区域划分和极角极径法来缩小检测范围,且运用算子[1 0-1]和[-1 0 1]对车道左右双线分别进行边缘叠加处理来提高霍夫变换法(HoughTransform)的检测精度,在新的TCR下进行车道线跟踪,解决了车道线检测偏离问题,搭建了汽车试验平台和软件平台。试验结果表明,检测算法在直道和弯道行驶下的检测准确率分别为93.8%和91.6%,且能排除弱光照和强光照干扰。  相似文献   

3.
为实现在自动驾驶复杂场景下检测数量变化的车道线,提出一种基于实例分割的车道线检测算法。首先以ResNet18网络作为主干网络提取图像特征,采用特征金字塔网络进行特征融合。同时设计一种扩张卷积残差模块来提高检测的精度;然后基于车道线的位置进行实例分割,利用语义分割出的车道线点位置预测对应的聚类点位置,通过对聚类点采用DBSCAN聚类算法实现车道线实例区分。结果表明,该算法能够在复杂的自动驾驶场景下有效地进行多车道线检测,在CULane数据集和TuSimple数据集上的调和平均值分别达到75.2%和97.0%。  相似文献   

4.
在车辆安全和驾驶行为相关研究中,车道线距离参数是重要的基础参数。针对传统机器视觉测量方法存在的标定过程复杂、测试成本高且移植性能差等问题,提出一种针对车侧摄像机图像的低成本车道线距离检测方法。首先,构建了一种融合局部Otsu算法与光照样条补偿算法的车道线区域分割方法,可在车道线磨损、复杂光照变化、车道线中断等场景中对车道线区域进行精确分割;其次,针对车道线边缘特征复杂多变的情况,设计了一种变尺度窗口算法来完成车道线边缘检测并可补全残损车道线;最后,采用多项式标定方法建立了车道线距离检测算法,实现了车道线距离的自动化快速检测。验证结果表明:在正常场景和多种复杂特殊场景下,所提出的检测算法平均检测误差为0.4 cm,平均检测速率达到30帧·s-1,整体上优于目前其他技术方案。该方法在检测成本和可移植性方面具有显著优势,可为相关研究领域的技术人员提供新的解决思路。  相似文献   

5.
针对传统车道检测和识别算法存在的问题,如操作复杂、处理速度慢,鲁棒性不足等问题,提出了一种新的快速车道识别算法。预处理摄像机拍摄的道路图像,并对三种二值化算法进行图像模拟实验,改进了传统的边缘检测Canny算法,并将Hough变换用于车道线识别。仿真实验表明:该算法达到了快捷准确的识别效果。  相似文献   

6.
在现代交通驾驶领域中,随着自动驾驶技术的迅速发展,车道线检测也变得至关重要。基于此,文章提出了一种基于传统图像处理算法的车道线检测方法,该方法利用了传统图像处理算法中的滤波算法、Canny边缘检测算法和Hough直线检测算法作为基本算法模型,采用只对ROI中进行检测的措施来满足对于前方车道线的准确检测。在检测中,使用了OpenCV开源图像处理库来对进行上述方法进行实现。此方法可极大减少对前方车道线检测的外界干扰,在汽车实验场中利用该方法,可以比较准确地检测出车辆前方的车道线,并且该算法在一般机器上能够实现实时级的车道线检测。但是在实验过程中,也发现当前方的障碍物较多的时候,所采用的算法不能很好地检测出车道线,对外界的抗干扰能力比较差。  相似文献   

7.
对高速公路不同线形条件和交通条件下的分车道、分车型85%位车速特征进行了分析,建立了高速公路不同行驶方向的曲线半径、转角及曲线长度与不同车型85%位车速的多元线性回归模型,给出了上坡路段需进行车速限制的临界坡度;分别对高速道路交通量和交通组成与85%位车速的关系进行了研究,给出了自由流条件下车速的分布范围,建立了大型车混入率与85%位车速的关系模型;对比分析了高速公路雨天与晴天的车速,得出了小雨天气对车速影响不大的结论.  相似文献   

8.
针对Canny边缘检测阈值在车道线识别中不易选取的问题,提出了基于Otsu算法实现自适应Canny边缘检测的方法。实验验证表明,其对远视野道路图像可以获得良好的边缘检测效果,而对近视野道路图像效果较差。进一步提出了目标区域补偿策略改进上述算法。结合Hough变换算法,实现了车道线的识别。实验结果表明,改进的算法可以达到实时获取车道线的要求。  相似文献   

9.
各种复杂环境下路面车道线的高效精确检测是自动驾驶领域中车道偏离预警系统的关键性技术之一。由于车辆实际运行环境的复杂性和路面车道线的多样性,现有方法在车道线检测的准确性和鲁棒性上仍需不断增强。提出一种面向多元场景结合GLNet的车道线检测算法。首先采用改进Gamma校正对待检测路面图像预处理,消减光照不均匀、夜晚等环境干扰,增强车道线纹理。然后为增强数据集的多样性,在LaneNet网络的基础上引入对抗生成网络DCGAN,构建GLNet网络模型。该模型采用编码-解码的网络结构提取车道线特征(车道蒙板和像素点),通过DBSCAN聚类算法将不同车道线划分为不同的实体,使用H-Net网络学习的视觉转换矩阵优化并拟合输出车道线。最后基于已训练好的GLNet权重模型对车道线进行精确提取,并在Tusimple数据集和自制数据集上测试验证。试验结果表明:该方法的检测准确率可达97.4%,相较于基于LaneNet网络的车道线检测算法明显提高;DCGAN网络的加入丰富了数据集类型,并提高了该模型的表征及分类能力;DBSCAN聚类算法的平均聚类时间约为0.016 s,相较于Meanshift算法运行效率更高。所提出的方法考虑了不规范、环境复杂等多种道路类型的车道线检测任务,提升了对复杂噪声与多元场景的处理能力,在车辆辅助驾驶领域具有较好的鲁棒性和适用性。  相似文献   

10.
车辆辅助驾驶系统中的三车道检测算法   总被引:1,自引:0,他引:1  
本文中提出了一种基于车道线特征的三车道检测算法。首先,在车道线预提取过程中对道路消失线以下部分的整个车道图像进行模糊化和边缘检测,并根据边缘点位置和方向角对消失点进行定位,同时基于消失点位置提取直线并结合车道模型对构成三车道的直线进行筛选和补充。接着在车道跟踪阶段,根据前一帧图像检测出的直线和消失点位置,对车道图像局部区域分别进行边缘点、直线的跟踪检测,并对消失点位置进行重定位。最后,对车道参数进行寻优以计算车道线曲率和车道宽度。试验结果表明,提出的边缘检测算法能有效检测模糊车道线边缘并抑制噪声,消失点和直线的检测方法耗时少且准确性高。在直线检测的基础上进行车道模型匹配能提高车道识别实时性,算法在车道线模糊、雨天、大雾和大曲率等环境下均具有较好的适应性。  相似文献   

11.
在具有车道线的特定自动驾驶场景中,针对目前端到端的行为决策算法直接输入原始图像进行决策导致的网络模型迁移性差、预测精度欠佳、泛化能力不足等问题,提出一种基于分段学习模型的车辆自动驾驶行为决策算法。首先,基于GoogLeNet建立一种端到端的车道线检测网络模型,并引入车道中心线作为决策的重要线索提高算法的迁移能力,同时利用YOLOv3目标检测模型对本车道内前方最近障碍物进行位置检测;而后,经几何测量模型将两者检测结果转换成环境状态信息向量为决策做支撑;最后,构建基于长短期记忆(LSTM)网络的驾驶行为决策模型,根据编码的历史状态信息刻画出动态环境中车辆的运动模式,并结合当前时刻的状态推理得到驾驶行为参量。使用建立的真实驾驶场景数据集对模型分别进行训练、验证与测试,离线测试结果显示车道线检测模型的检测位置误差小于1.3%,车道内前方障碍物检测模型的检测精度达98%以上,驾驶行为决策网络模型表征预测优度的决定系数 大于0.7。为进一步验证算法的有效性,搭建了Simulink/PreScan联合仿真平台,多种工况下的仿真验证试验中多个评价指标均达到工程精度要求,实车测试的试验结果也表明该算法可实现复杂驾驶场景下平稳、准确无偏航的预测效果并满足实时性要求,且与传统端到端模式的算法相比,具有更好的迁移性和泛化能力。  相似文献   

12.
针对智能驾驶系统中车道线检测易受车道标记清晰度、光照能见度及道路环境复杂度等影响而导致车道线检测率不高的问题,提出一种特征结合的多阈值过滤车道线检测算法。即对图像进行梯度阈值过滤,再与颜色信息阈值过滤后的图像相结合,最后用改进Hough变换检测车道线。实验结果表明,本算法在存在阴影遮挡、路面出现泛白等因素下仍可以准确提取道路线信息,检测率平均高达93.89%,基本满足要求。  相似文献   

13.
针对车道线检测中存在的诸多问题,在道路图像预处理的基础上,对Canny算子中的双阈值选取进行改进,能够自适应精确提取车道线边缘特征,并利用带极角约束的Hough变换完成直线检测。算法能够在不同道路环境中准确检测车道线标识,降低光照等因素对车道线检测结果的影响。  相似文献   

14.
荣红佳 《时代汽车》2024,(7):175-177
车道线检测在自动驾驶和智能交通系统中扮演着至关重要的角色,它直接关联到这些系统的安全性和有效性。尽管传统的车道线检测算法,如基于边缘提取的方法,已被广泛应用,但它们存在一些局限性。[1]特别是在复杂的道路环境中,这些方法常常难以准确识别车道线,从而影响整体系统的性能。针对这一挑战,本文提出了一种新的车道线待选点提取方法,该方法基于Sobel算子和Hsv颜色空间模型,并结合霍夫变换,形成了一种综合的三模型方法。Sobel算子在边缘检测方面表现优异,能够有效识别车道线的形状和边界;Hsv颜色空间模型则有助于处理在复杂光照和天气条件下的车道线识别;霍夫变换则能在边缘信息的基础上进行直线的检测和确认。这三种方法的结合不仅弥补了单一方法的不足,还大大提升了车道线检测的准确性和鲁棒性。  相似文献   

15.
环境感知系统是智能驾驶电动汽车智能驾驶系统中不可或缺的一部分,相关的视觉图像处理技术是基于视觉的环境感知系统的核心组成部分,是国内外学者关注的热点。在现有车道线识别算法的基础上,本文提出了一种更完善的检测算法。通过逆透视投影变换转换坐标,对输入图像应用双边滤波、大律法二值化、形态学处理等前处理过程,消减噪声;最后使用Canny算子进行边缘检测,并利用Hough变换识别直线,对结果进行筛选。实验证明车道线识别算法能在不同环境下成功地识别出车道线,该算法有着较好的实时性和鲁棒性。  相似文献   

16.
对高速公路不同线形条件和交通条件下的分车道、分车型85%位车速特征进行了分析,建立了高速公路不同行驶方向的曲线半径、转角及曲线长度与不同车型85%位车速的多元线性回归模型,给出了上坡路段需进行车速限制的临界坡度;分别对高速道路交通量和交通组成与85%位车速的关系进行了研究,给出了自由流条件下车速的分布范围,建立了大型车混入率与85%位车速的关系模型;对比分析了高速公路雨天与晴天的车速,得出了小雨天气对车速影响不大的结论。  相似文献   

17.
提出一种基于边缘点投影的车道线快速识别算法,可用于车道线检测和车道跟踪。首先在感兴趣区域内基于投票机制检测消失点,定义目标搜索区域,利用边缘检测信息提取车道特征点。然后沿其梯度方向投影计数,获取车道线上的两个点,再通过置信度判断检测出车道线。最后定义带状区域,实现车道跟踪。采用TMS320DM6437为硬件开发平台,并在集成开发环境CCS下实时仿真调试程序。实车试验结果表明,该算法在DSP硬件平台上运行具有很好的实时性、鲁棒性及准确性,在有阴影、车辆遮挡或雨雾天气等复杂行驶环境下的车道识别和跟踪效果令人满意。  相似文献   

18.
为了改善因传统边缘算子在车道线特征提取时鲁棒性差、传统霍夫变换弯道拟合能力较弱导致车道偏离预警率降低的问题,提出了一种基于优化最大类间方差法(OTSU算法)阈值分割与滑动窗口法的车道偏离预警方法。首先,使用遗传退火算法优化求解OTSU算法的最优阈值并调用整体嵌套边缘检测(HED)模型获取车道线边缘特征,将感兴趣区域转换成鸟瞰图形式;然后,使用滑动窗口法将车道线切分并逐个对窗口内的车道像素点进行二阶多项式拟合;最后,根据车辆与车道线的相对位置关系进行车道偏离预警以及弯道预警。试验结果表明,该方法的综合路况预警准确率为95.92%,检测速率可达34 ms/帧。  相似文献   

19.
车道线检测是汽车安全辅助驾驶系统的基础模块,在城市道路场景下车道线存在受碾压致特征缺失、车辆间相互遮挡以及光照环境复杂多变等问题,本文提出基于网格分类与纵横向注意力的车道线检测方法。提取道路图像的全局特征图,将其划分为若干网格,计算网格中车道线的存在概率;通过将车道线检测转化为网格位置的分类,定位每条车道线的特征点;构建基于Ghost模块的主干网络,结合车道线的形状特征,引入纵横向注意力机制,通过增强车道线纹理特征和融合位置信息,获取缺失的细节特征;利用三次多项式,拟合车道线特征点,修正车道线的检测结果。基于TuSimple与CULane数据集,在ResNet18、ResNet34和DarkNet53中嵌入纵横向注意力模块,并开展对比实验。结果表明:在TuSimple数据集上,嵌入纵横向注意力模块后,模型精度均提升了约0.1%,与其他模型相比,Ghost-VHA模型的准确率为95.96%。在CULane数据集上,嵌入纵横向注意力模块可提升精度约0.65%,与其他模型相比,Ghost-VHA的F1分数为72.84%,提升了0.54%。在TuSimple与CULane数据集上,Ghost-...  相似文献   

20.
为提高车道线的检测精度和识别率,在构建新的道路模型基础上提出了一种基于BP神经网络与最小二乘法曲线模型的车道线检测算法。该算法运用具有方向性的线检测器对道路图像进行边缘检测,提取出道路边缘点;接着利用BP神经网络估计新的道路模型参数确定模型函数;根据新道路模型函数的上凸性,以函数最大值为分界点,分界点左侧为左车道线,右侧为右车道线,从而完成对左右车道线的检测;最后利用最小二乘法实现左右车道线重构。实验结果表明,所提出的算法的检测精度达到92.8%,适合多种道路状况下的车道线检测,具有较好的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号