首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决车辆噪声主动控制系统中参考信号在车内容易受到次级声源的污染和以发动机转速信号作为参考只能控制发动机阶次噪声的问题,提出一种基于智能数据融合的车内噪声主动控制算法。首先根据传递路径分析结果选择对车内噪声贡献量大的车外测点信号,然后将发动机转速信号和车外测点信号进行数据融合作为参考信号,再利用迭代变步长FxLMS算法对驾驶员耳侧噪声进行主动控制。基于试验采集的不同工况车内噪声进行仿真分析,结果表明,所提出的算法相较于采用发动机转速信号作为参考信号的方法在总声压级上降低了4.4 dB(A)。  相似文献   

2.
车内噪声主动控制系统设计与试验研究   总被引:9,自引:1,他引:9  
根据自适应噪声主动控制理论建立自适应有源消声控制系统,提出车内噪声信号识别和预测的神经网络方法。并用自适应有源消声系统对车内低频噪声进行主动降噪,同时对试验结果进行分析。通过对被试面包车在稳态工况下的试验研究表明,采用该方法能有效降低车内低频噪声,为进一步在汽车上实现车内噪声主动控制奠定了基础。  相似文献   

3.
针对基于LMS算法道路噪声主动控制在面对冲击性噪声时性能骤降的问题,建立了基于滤波-x最小平均绝对偏差(FxLMAD)算法的道路噪声主动控制系统,以控制路面冲击输入下的车内噪声。首先对路面冲击输入下车内噪声特性进行了分析,发现其噪声是非高斯的,且更符合α稳定分布。接着对基于FxLMAD算法的噪声主动控制进行仿真,结果表明该算法在达到良好降噪效果的前提下还拥有结构简单、计算量小的优点。最后,搭建了车内噪声主动控制系统并在某燃油车上完成了冲击路面的实车道路试验。结果显示,基于FxLMAD算法的车内道路噪声主动控制系统在50~500 Hz范围内的总声压级降噪量可达约2 dB(A),明显优于普通的LMS算法。  相似文献   

4.
基于神经网络方法的车内噪声自适应主动控制   总被引:4,自引:0,他引:4  
建立了一种基于神经网络方法的车内噪声主动控制系统。用Elman神经网络对驾驶员耳旁噪声信号进行识别、预测,并用LSLL自适应信号处理方法对车内低频噪声进行主动控制。通过在稳态工况下对被测试轻型客车的试验研究表明,此系统能有效降低车内低频噪声。  相似文献   

5.
在研究汽车车内噪声的过程中,判断低频噪声的主要来源和降低车内低频噪声水平是一个难点。运用声传递向量(ATV)技术,以某轿车为例,建立车内声学空腔边界元模型,对车内低频噪声进行仿真;通过对声传递向量以及声压频响函数的计算,进一步对低频段的噪声贡献量分析,为判断低频噪声的主要来源提供了一种分析方法。选取车内驾驶员右耳畔声压响应的6个峰值点,采用幅值—相位图对场点声压进行模拟,对车身板件声学贡献量进行排序,发现防火墙和前挡风玻璃的结构振动对车内低频噪声的产生可能有重要影响,为进一步的改进提供一定的参考依据。改进设计后,车内低频噪声水平得到一定程度抑制。  相似文献   

6.
车内噪声控制技术的研究现状及发展趋势   总被引:1,自引:0,他引:1  
传统的噪声控制方法采用较大阻尼比的材料,利用隔声、隔振技术,进行结构优化设计来控制噪声,但往往与汽车轻量化的目标相矛盾,且效果也不十分理想。因此,车内噪声的主动控制技术成为近几年人们研究的重点。本文阐述了汽车车内噪声的产生机理和传统的控制方法,并对主动控制方法和仿真测试技术在汽车减振降噪领域的应用作了探讨和展望。  相似文献   

7.
电动汽车车内噪声对乘客的驾乘舒适性感受具有较大影响,在追求高性能与长续航的基础上匹配最优的车内NVH性能,将大大提高电动汽车的竞争力。本文以电动汽车车内噪声为研究对象,以多维度声品质优化为研究目标,使用声学材料对车内关键部位进行包装,降低车内高频噪声,利用噪声主动均衡系统,对车内噪声的各临界频带进行抵消或者放大,通过软件仿真确定各临界频带的最佳增益系数,并将最佳控制的仿真结果进行基于心理声学声品质客观评价,搭建主客观评价的关系模型,获得影响车内驾乘人员听觉主观感受的客观参量,通过噪声控制技术有针对性地加以控制和改善,为后续的研究提供理论依据和参考。  相似文献   

8.
为提升车辆的音效水平,提出了一种适用于乘用车的新音响系统。基于有限元分析理论建立车辆门板件模型,计算出的车门板件固有频率和模态振型结果作为音响系统改进的重要输入。为了降低模态对音效水平的影响,提出了改进模态共振频率的措施。基于整车座舱空间和心理感知期望水平,制定了23个扬声器的系统改进方案。最后,通过主观评测和客观测试对改装后的目标车型进行评价。通过对比竞品车辆,结果验证了上述方法可显著提升乘用车音效水平,为乘用车音响系统改进提供了参考。  相似文献   

9.
车内噪声水平是体现汽车乘坐舒适性的重要性能指标之一.为了提高车辆的舒适性,世界各大汽车公司都对车内噪声水平制定了严格的控制标准,将车内噪声控制作为重要的研究方向.传统的噪声控制技术,利用CAE(一种计算机辅助工程分析)和车辆试验测试,确定各声源对车内噪声的贡献值,在主要噪声传播途径上根据实际情况分别配置具有吸声、隔声、阻尼特性的降噪材料的声学包,结果往往增加了汽车的整备质量,影响汽车的动力性、经济性等其他性能.而主动控制技术的发展以及智能降噪材料结构的出现,为降低车内噪声控制提供了新方法.  相似文献   

10.
文中提出将自适应神经网络技术用于以压电陶瓷为执行元件的车内噪声主动控制研究中,通过以控制车身板件振动来降低结构的声辐射,进而实现车内噪声主动控制的技术路线,并进行了车身板件的振动主动控制试验和车内噪声的主动控制试验,取得了较好的减振降噪效果,为今后类似研究提供了参考。  相似文献   

11.
《汽车知识》2013,(2):10-10
著名音响制造厂商哈曼今日发布了一项最新的专利技术:0uantumLogic 3D surroundtechnology。这项车内3D声音技术是建立在QuantumLogicsurround(后简称0LS)数字信号处理技术的基础上。通过一项特别的3D算法提取音频流,并计算声音、设备和车内空间信息,以此提供给车内乘员一种犹如身临其境般的3D环绕音效。  相似文献   

12.
车内噪声主动控制系统初探   总被引:8,自引:0,他引:8  
冯振东  宋传学 《汽车工程》1991,13(4):202-207
本文基于对车内噪声进行试验分析,提出了用微机、数字电路和少数声学元件等组成的车内闭环主动消声试验系统,并进行了系统配置和软件设计。在考虑实际系统中传递环节的同时,对威德罗(Widrow)提出的LMS算法做了改进。最后,给出了在不同转速下的试验结果。  相似文献   

13.
以某车型的噪声-振动-平顺性(NVH)设计开发为背景,针对其怠速关空调时车内噪声大的问题,根据噪声源隔离试验对进排气、发动机噪声进行分析,确认其主要噪声源为发动机。与对标车进行发动机噪声台架对比试验,得出传递路径中的前围隔噪量不足及存在漏噪现象为主要原因。在此基础上,通过控制噪声传递路径的方法对前围的密封性和隔噪两方面的设计进行改进,最终改善了车内噪声性能。  相似文献   

14.
为分析某轻型卡车车内噪声整体偏大问题,通过OTPA(运行工况传递路径分析)试验,得到车内噪声的主要路径贡献量。对车内噪声峰值进行传递路径分析,得出引起车内噪声偏大的主要传递路径。  相似文献   

15.
针对某款车在加速工况下,发动机转速在3 600 r/min左右车内出现轰鸣噪声,文章利用试验和CAE相结合的方法,明确进气系统存在120 Hz声模态和空滤支架安装点动刚度不足是产生车内轰鸣声的要因。通过提升空滤支架安装点动刚度,出气管设计120 Hz谐振腔,降低了问题转速的噪声峰值,主观评价轰鸣声改善明显。另外,针对出气管隔振波纹的隔振方向对车内噪声的影响进行了研究,试验验证隔振波纹解耦对车内噪声峰值有2 dB(A)的优化效果,此优化方向为工程化控制和解决进气系统噪声问题提供了有效可行的新思路。  相似文献   

16.
车内减振降噪技术的研究   总被引:1,自引:3,他引:1  
分析了汽车车内噪声产生的机理,评述了车内噪声被动控制技术的三个途径,并对主动控制技术在汽车减振 降噪领域的应用作了探讨和展望。  相似文献   

17.
以四辆不同类型的纯电动汽车在匀速和POT(缓油门加速)工况下电机近场和驾驶员右耳旁噪声采集样本为评价对象,对电机近场和车内噪声A计权声压级进行对比,计算噪声传递的衰减百分比,并计算车内噪声的心理学客观参数。同时,利用声品质客观量化数学模型进行四辆样车的车内声品质评价。同时,通过对电机电磁噪声阶次的提取和分离评价,分析了电磁噪声对电动汽车声品质的影响。相关试验分析结果对电动汽车的声学设计和电磁噪声改进具有一定的指导意义。  相似文献   

18.
车内主动降噪技术在低频噪声控制方面有较明显的优势,利用车内扬声器发出抵消声波实现降噪。论文采用扫频的方法进行主动降噪的次级路径建模,并在某四缸发动机车型上实现了控制器与原车线路匹配,采用原车音响搭建车内发动机主动降噪系统。采用MATLAB搭建仿真模型验证自适应陷波算法,推导了用于车内次级路径建模的扫频公式及辨识结果。再从工程角度介绍控制器与整车接口的匹配方法。最后采用数字信号处理(DSP)技术进行实车效果验证,在锁定二挡的加速工况下发动机二、四、六阶噪声降低,30~300 Hz的声压级Overall(OA)值最大降低4 dB。  相似文献   

19.
车内噪声控制是汽车NVH (noise, vibration and harshness)研究的重要内容之一。传统的被动控制技术对中高频(≥500 Hz)噪声非常有效,但对低频噪声效果不明显。主动噪声控制(active noise control, ANC)基于相消干涉原理,非常适合控制低频噪声,已被众多车型全系标配。目前,学术界关于主动噪声控制的研究主要集中在新型控制算法的开发和性能优化上,而工业界对于主动噪声控制效果的报道比较片面,公开、全面的实测结果较少。为给学术研究提供参考,同时让更多主机厂了解主动噪声控制系统的实际效果,以某全系标配发动机噪声主动控制系统的量产车型为研究对象,分别在定置和行驶工况下对其主动噪声控制系统的性能和系统鲁棒性进行了全面的测试。测试结果表明:该系统较好地控制了发动机噪声且鲁棒性良好。  相似文献   

20.
针对某自主纯电动车制动减速时车内产生的啸叫问题,经主观驾评及客观测试分析后,排查出整车制动电机转速为4300rpm~3700rpm时车内出现啸叫噪声;通过齿轮啮合原理分析阐述了减速器制动减速噪声的产生机制,并进行整车测试、阶次分析等研究分析方法排查出整车制动减速过程中啸叫激励源头来自减速器一级主动齿轮阶次。结合该车型设计开发进度,提出对整车调整制动能量回收扭矩策略方案,对实施方案优化后的车辆进行主观评价和客观测试,结果表明一级主动齿轮阶次突变大幅削弱,制动减速工况车内相关阶次声压级峰值降低了5.1dB,解决了驾驶室内啸叫问题,提高了乘坐舒适性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号