首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Argo is an international project that is deploying an array of temperature and salinity profiling floats over the global ocean. Here we use the error formulation derived from Optimal Statistical Interpolation to estimate statistical errors associated with the recovery of the temperature field in the North-East Atlantic ocean. Results indicate that with the present distribution of floats (119 in the considered domain), scales of wavelength larger than 500 km can be recovered with a relative uncertainty (rms error relative to the standard deviation of the field) of about 7% at 50 m, 8% at 200 m and 10% at 1000 m. This corresponds to mean absolute errors of 0.111 °C at 50 m, 0.104 °C at 200 m and 0.073 °C at 1000 m.The splitting of total errors into instrumental and sampling contributions reveals that, in the present scenario, errors are more due to the small number of floats than to instrumental errors, especially at upper levels. For scales larger than 500 km this will hold true until 200–250 floats are deployed (less than 200 for deep levels). In such a simulated scenario, the number of observations and the technology become approximately equally limiting factors for the accuracy of the temperature field mapping, with total relative errors of less than 2% at upper levels and about 3% at 1000 m.  相似文献   

2.
Using CalCOFI data for coastal shallow stations (above 100 m depth), higher than expected nitrate concentrations were detected in near-surface high-temperature waters off of Central Baja California during some El Niño winters. Though recent data are not available for Central Baja California, past El Niño data, though limited, showed nitrate concentrations above 16 μM at temperatures above 16 °C, and nitrate concentrations between 1 and 2 μM at 19 °C, while the previously established relationship of temperature and nitrate for California Current waters predicts nitrate depletion above 14 or 15 °C. The anomalous, high temperature–high nitrate enrichment events documented in Central Baja California were detected as shallow as 9 m and as deep as 73 m, were associated with low-oxygen (between 2 and 4 ml/l) and high-salinity (between 33.8 and 34.3 psu) waters, and occurred during the winter months of an El Niño year. Using recent data for San Diego, CA, similar but weaker enrichment events were detected for the El Niño winter of 1997–1998. The periodic shoaling of a subsurface subtropical water mass of high temperature, high salinity, low oxygen and high nutrients during some El Niño winters is proposed to cause periodic enrichment and to maintain productivity during warming events in this area. Enrichment events were not detected off Ensenada, in Northern Baja California, possibly due to the amplification of the onshore flow during El Niño there, or due to the Ensenada front. The proposed mechanism of periodic enrichment of nutrient-depleted surface waters during some El Niño winters by subsurface waters from the California Undercurrent may explain the following: (1) survival of giant kelp forests at their southern limit in Central Baja California documented during past El Niño events in warm waters, (2) the rapid recovery and high carrying capacity of giant kelp documented after the mass disappearance during El Niño 1997–1998, and (3) the increase in the extent of mesotrophic chlorophyll detected in the area during the 1997–1998 and 1982–1983 El Niño events.  相似文献   

3.
A three dimensional hydrodynamic model of the Malin-Hebrides shelf region is used to investigate the spatial variability of the wind and tidally induced residual flow in the region and the influence of flow from the Irish Sea and along the shelf edge. By this means it is possible to understand the spatial variability in the long term observed flow fields in the region and the range of driving forces producing this flow. The model uses a sigma coordinate grid in the vertical with a finer grid in the near surface and near bed shear layers. The vertical diffusion of momentum in the model is parameterised using an eddy viscosity coefficient which is derived from turbulence energy closure models. Two different turbulence models are used to compute the eddy viscosity, namely a two-equation (itq2−q2ℓ) model which has prognostic equations for both turbulence energy and mixing length and a simpler model in which the mixing length is a specified algebraic function of the water depth.The wind induced response to spatially and temporally constant orthogonal wind stresses, namely westerly and southerly winds of 1 N m−2, are derived from the model. By using orthogonal winds and assuming linearity, then to first order the response to any wind direction can be derived. Computed flows show a uniform wind driven surface layer of magnitude about 3% of the wind speed and direction 15 ° to the right of the wind, in deep water. Currents at depth particularly in the shelf edge and near coastal region show significant spatial variability which is related to variations in bottom topography and the coastline.Calculations show that tidal residual flows are only significant in the near coastal regions where the tidal current is strong and exhibits spatial variability. Flow into the region from the Irish Sea through the North Channel although having its greatest influence in the near coastal region, does affect currents near the shelf edge region. Again the spatial variability of the flow is influenced by topographic effects.A detailed examination of wind induced current profiles together with turbulence, mixing length and viscosity, at a number of locations in the model from deep ocean to shallow near coastal, shows that both turbulence models yield comparable results, with the mixing length in the two equation model showing a similar dependence to that specified in the simpler turbulence model.Calculations clearly show that flow along the shelf edge area to the west of Ireland and from the Irish Sea entering the region, together with local wind forcing can have a major effect upon currents along the Malin-Hebrides shelf. The flow fields show significant spatial variability in the region, comparable to those deduced from long term tracer measurements. The spatial variability found in the calculations suggests that a very intense measurement programme together with inflow measurements into the area is required to understand the circulation in the region, and provide data sets suitable for a rigorous model validation.  相似文献   

4.
An unmanned automated boat equipped with an acoustic Doppler current profiler was used in field surveys at a tidal inlet, the Southwest Pass of Vermillion Bay, Louisiana on Sept 6 and Oct 6, 2007. During the first survey, under calm weather conditions, a small scale eddy with a diameter of 300 m was discovered with strong upwelling and downwelling zones. A detailed analysis of this small eddy shows that the eddy's velocity field is relatively uniform in the vertical and the eddy is formed by a flow convergence, tidal velocity shear induced relative vorticity, and the interaction between the horizontal flows and bathymetry. The major upwelling area is where an uphill flow occurs while the major downwelling area is where a downhill flow occurs. The vorticity of this eddy is on the order of 0.013 s? 1, which is two orders-of-magnitude larger than the planetary vorticity, and one-order-of magnitude larger than that in a typical tidal inlet without eddies. The Coriolis effect is thus insignificant and the generation of the eddy cannot be affected by the earth rotation. The maximum upwelling and downwelling velocities exceed 0.3 m/s. This high vertical velocity in a tidal inlet does not appear to have been reported before. The second survey, conducted under a thunder storm condition, did not reveal a similar eddy at the same location during roughly the same tidal phase. Though the measurements of 3-D flow structure under a thunder storm condition in a tidal channel does not appear to have been reported before, the second survey is of important value in providing support of the mechanism of the eddy formation during the first survey: the wind tends to produce downwind flow in shallow water than in deep water, producing a velocity shear counterproductive to the formation of the eddy. Therefore, the second survey under a thunder storm condition did not show an eddy. A scaling analysis of the non-hydrostatic flow shows that the uphill and downhill flows introduce a non-hydrostatic flow component proportional to the square of the bottom slope which leads to the conclusion that the non-hydrostatic flow component affects less than 10% of the vertical momentum balance.  相似文献   

5.
A hybrid data assimilation scheme designed for operational assimilation of satellite sea surface temperatures (SST) into an ocean model has been developed and validated against in-situ observations. The scheme consists of an optimal interpolation (OI) part and a greatly simplified Kalman filter (KF) part.The OI is performed only in the longitudinal and latitudinal directions. A climatological field is used as a background field for the interpolation. It is constructed by fitting daily averages of satellite SST to the annual mean, annual, and semiannual harmonics in a 20 km by 20 km grid. The background error covariance is approximated by a spatially varying two-dimensional exponential covariance model. The parameters of the covariance model are fitted to the deviations of the satellite data from the background field using data from a full year.The simplified KF uses ocean model forecasts as a background field. It is based on the assumption that it is possible to neglect horizontal SST covariances in the filter and that the typical time scale for vertical mixing in the mixed layer is much shorter than the average time between observations. We therefore assume that the error variance in a column of water is evenly spread out throughout the mixed layer. The result of these simplifications is a computationally very efficient KF.A one year validation of the scheme is performed for year 2001 using an operational eddy resolving ocean model covering the North Sea and the Baltic Sea. It is found that assimilation of sea surface temperature data reduces the model root mean square error from 1.13 °C to 0.70 °C. The hybrid scheme is found to reduce the root mean square error slightly more than the simplified KF without OI to 0.66 °C. The inclusion of spatially varying satellite error variances does not improve the performance of the scheme significantly.  相似文献   

6.
Three Argos buoy-years of Lagrangian data in westward-moving cyclonic eddies, or Storms, near 32.5°N, together with hydrographic measurements, have shown that Storms move westward at nearly 3 km day−1. Water in eddies can be trapped and moved westward by advection within the eddy or by phase propagation of the eddy pattern, so we cannot say that the flow field (or Eulerian mean) is 3 km day−1 westward. Two moorings (155 and 156) deployed in the Storm Corridor have provided a further 8 instrument-years of Eulerian data. The temperature and current records confirmed that two Storms a year passed each mooring over the 2-year measurement period. As expected, there is a lag of 1.3 month at mooring 155 (which is 102 km to the west of mooring 156) with respect to conditions at mooring 156. The progressive vector diagrams (PVDs) derived from the current meter records exhibit fairly regular X (east or zonal) and Y (north or meridional) displacement scales that repeat with semi-annual periodicity (SAP). The dominant current signal is the north component of the SAP, which reaches an amplitude of 18 cm s−1 for the upper layer or near surface current record (242-m depth). The geostrophic north component values derived from altimetry were in good agreement with the upper layer current meter measurements. The large north component amplitude was not interpreted as evidence for Rossby Waves but rather due to the passage of nine eddies (eight complete) of alternate sign (cyclonic, anticyclonic) passing the mooring rigs during the 2-year deployment period. The Y scale shows that the near surface characteristic or mean maximum azimuthal speed is about 35 cm s−1 for cyclonic eddies or Storms, and that this value is reduced to 4 cm s−1 at 1400-m depth. The residual or mean Eulerian currents range from 8 cm s−1 for the upper layer currents to 1 cm s−1 for the deeper currents at 1400-m depth and are predominantly westward. Simple theoretical considerations and idealised numerical simulations show that the mean westward Eulerian current depends markedly on whether the eddy centres pass to the north or south of the rigs. This raises the question as to what do we mean by Eulerian residual currents, even for relatively long records (2 years). It is shown that the strong near surface westward current (6 km day−1) measured at mooring 155 is largely due to a westward-moving eddy field with variable centre offsets. The magnitude of the near surface east–west component of flow was estimated as eastward at 2 cm s−1. The north–south component of mean flow was southward at 2 cm s−1. The deeper records gave a weak westward flow of 1 cm s−1 but did not show a significant southward component for the mean Eulerian flow field. 7.4 float-years of Lagrangian ALACE data in the Subtropical Front region near 740 dbar gave mean east–west flows that were <0.5 cm s−1. Overall, it is shown that the eddy structures propagate westward mainly by phase propagation (i.e. a westward-moving pattern with no westward advection for the current meter to measure), though plane Rossby Wave dynamics appeared inappropriate. Theoretical and modeling considerations show that a speed of 3-km day−1 westward is too large a value for the self-advection of eddies due to the beta effect.  相似文献   

7.
A model/data comparison was performed between simulated drifters from a high-resolution numerical simulation of the North Atlantic and a data set from in situ surface drifters. The comparison makes use of pseudo-Eulerian statistics such as mean velocity and eddy kinetic energy, and Lagrangian statistics such as integral time scales. The space and time distribution of the two data sets differ in the sense that the in situ drifters were released inhomogeneously in space and time while the simulated drifters were homogeneously seeded at the same time over a regular 1° grid. Despite this difference, the total data distributions computed over the complete data sets show some similarities that are mostly related to the large-scale pattern of Ekman divergence/convergence.Comparisons of eddy kinetic energy and root mean square velocity indicate that the numerical model underestimates the eddy kinetic energy in the Gulf Stream extension and in the ocean interior. In addition, the model Lagrangian time scales are longer in the interior than the in situ time scales by approximately a factor of 2. It is suggested that this is primarily due to the lack of high-frequency winds in the model forcing, which causes an underestimation of the directly forced eddy variability. Regarding the mean flow, the comparison has been performed both qualitatively and quantitatively using James' statistical test. The results indicate that over most of the domain, the differences between model and in situ estimates are not significant. However, some areas of significant differences exist, close to high-energy regions, notably around the Gulf Stream path, which in the model lies slightly north of the observed path, although its strength and structure are well represented overall. Mean currents close to the buffer zones, primarily the Azores Current, also exhibit significant differences between model results and in situ estimates. Possibilities for model improvement are discussed in terms of forcings, buffer zone implementations, turbulence and mixed layer parameterizations, in light of our model/data comparison.  相似文献   

8.
A 1/32° global ocean nowcast/forecast system has been developed by the Naval Research Laboratory at the Stennis Space Center. It started running at the Naval Oceanographic Office in near real-time on 1 Nov. 2003 and has been running daily in real-time since 1 Mar. 2005. It became an operational system on 6 March 2006, replacing the existing 1/16° system which ceased operation on 12 March 2006. Both systems use the NRL Layered Ocean Model (NLOM) with assimilation of sea surface height from satellite altimeters and sea surface temperature from multi-channel satellite infrared radiometers. Real-time and archived results are available online at http://www.ocean.nrlssc.navy.mil/global_nlom. The 1/32° system has improvements over the earlier system that can be grouped into two categories: (1) better resolution and representation of dynamical processes and (2) design modifications. The design modifications are the result of accrued knowledge since the development of the earlier 1/16° system. The improved horizontal resolution of the 1/32° system has significant dynamical benefits which increase the ability of the model to accurately nowcast and skillfully forecast. At the finer resolution, current pathways and their transports become more accurate, the sea surface height (SSH) variability increases and becomes more realistic and even the global ocean circulation experiences some changes (including inter-basin exchange). These improvements make the 1/32° system a better dynamical interpolator of assimilated satellite altimeter track data, using a one-day model forecast as the first guess. The result is quantitatively more accurate nowcasts, as is illustrated by several model-data comparisons. Based on comparisons with ocean color imagery in the northwestern Arabian Sea and the Gulf of Oman, the 1/32° system has even demonstrated the ability to map small eddies, 25–75 km in diameter, with 70% reliability and a median eddy center location error of 22.5 km, a surprising and unanticipated result from assimilation of altimeter track data. For all of the eddies (50% small eddies), the reliability was 80% and the median eddy center location error was 29 km. The 1/32° system also exhibits improved forecast skill in relation to the 1/16° system. This is due to (a) a more accurate initial condition for the forecast and (b) better resolution and representation of critical dynamical processes (such as upper ocean – topographic coupling via mesoscale flow instabilities) which allow the model to more accurately evolve these features in time while running in forecast mode (forecast atmospheric forcing for the first 5 days, then gradually reverting toward climatology for the remainder of the 30-day forecast period). At 1/32° resolution, forecast SSH generally compares better with unassimilated observations and the anomaly correlation of the forecast SSH exceeds that from persistence by a larger amount than found in the 1/16° system.  相似文献   

9.
此研究从N-S基本方程出发,采用亚格子尺度模型,运用大涡模拟方法,通过数值计算研究了船舶螺旋桨机翼型桨叶在低马赫数下的粘性绕流情况,其中包括创建模型、网格划分等,获得了速度场、压力场和涡量场等图像,对减小船舶阻力、降低振动噪声和提高船舶螺旋桨的设计水平具有十分积极的现实意义。  相似文献   

10.
低磁材料舰船的磁性防护要求高,其中摇摆产生的涡流磁场占总磁场的比例很大,正确分析其涡流磁场具有重要意义。以低磁旋转椭球壳作为船体模型,从涡流磁场的电磁场方程及涡流密度的边值问题出发,建立了地磁场中纵摇旋转椭球壳涡流磁场的数学模型,利用分离变量法对涡流电流进行了求解,从而根据毕奥-萨伐定律推导出旋转椭球壳纵摇至任意角度产生的涡流磁场,为低磁钢壳体舰船纵摇的涡流磁场分析论证提供了理论基础。  相似文献   

11.
海上平台是开采海洋资源的关键建筑,而支撑柱在平台中起着至关重要的作用。本文建立在海水作用下支撑柱做单圆柱绕流、串列双圆柱绕流和并列双圆柱绕流的二维流场模型,运用大涡模拟方法,对这3种模型进行数值模拟,得出其瞬时流场速度云图和圆柱受力特性曲线图。模拟计算层流和湍流情况下的圆柱绕流,通过模拟结果分析流场、升力系数和阻力系数的变化规律。  相似文献   

12.
Abstract

Although the early efforts to save San Francisco Bay in the 1960's provided the role model for protection of California's 1100 mile ocean coastline, neither Proposition 20 of 1972 nor the California Coastal Act of 1976 provided any benefits to San Francisco Bay. One result is that the Bay is locked into its urban, shoreline‐use dominated plan of 1969 while every other estuary and coastal wetland in California receives much stronger protection of its resources. Furthermore, due to the complexity of California's water laws, there is no instream flow protection for receiving waters such as San Francisco Bay. This is particularly critical considering that 70% of the Bay's freshwater inflow has been diverted. The Bay's present decline as the largest and most important estuary on the West Coast, as well as its possible death as an estuary, may be irreversible. The problem requires the immediate attention of engineering, scientific, economic and legal disciplines if San Francisco Bay is to be saved.  相似文献   

13.
基于有限体积法建立描述不可压缩粘性流体三维运动的数学模型,引入浸入边界法的无滑移固定壁边界条件和大涡数值模拟的Smagorinsky.Lilly亚格子模型,针对层流(Re=100)和湍流(Re=3900)状态下的圆柱绕流流场进行数值模拟研究,验证结果表明该方法能较有效模拟非定常圆柱绕流流场的形态。在层流状态下圆柱体下游存在形态清晰的卡门涡街结构且无明显的掺混现象;在Re=3900的湍流状态下圆柱下游的掺混现象显著增强,圆柱下游约1.0D处的脉动强度达到最大值。  相似文献   

14.
通过丁坝对水流进行控制是航道整治中常用的工程措施,丁坝附近水流呈强紊动特性,大涡模拟相对于基于雷诺方程的时均模型对涡旋有较强的捕捉能力。在直角坐标系的基础上,将大涡模拟中的亚格子应力模型(SGS模型)引入河道水流平面二维数学模型中,通过盒式滤波函数将控制方程进行滤波,大尺度量通过控制方程直接求解,小尺度量借助Smagorinsky提出的亚格子尺度应力模型进行求解。采用空间等步长的正方形网格和交替方向隐式差分法对其控制方程进行离散求解。将模型初步应用于非淹没丁坝绕流的数值模拟中,计算结果表明,该模型对湍流旋涡的捕捉和水深计算较为合理,计算精度可满足工程实践要求。  相似文献   

15.
This work reports a new methodology for deriving monthly averages of temperature (T) and salinity (S) fields for the Indian Ocean based on the use of an artificial neural network (ANN). Investigation and analysis were performed for this region with two distinct datasets: (1) monthly climatological data for T and S fields (in 1° × 1° grid boxes) at standard depth levels of the World Ocean Atlas 1994 (WOA94), and; (2) heterogeneous randomly distributed in situ ARGO, ocean station data (OSD) and profiling (PFL) floats. A further numerical experiment was conducted with these two distinct datasets to train the neural network model. Nonlinear regression mapping utilizing a multilayer perceptron (MLP) is employed to tackle nonlinearity in the data. This study reveals that a feed-forward type of network with a resilient backpropagation algorithm is best suited for deriving T and S fields; this is demonstrated by independently using WOA94 and in situ data, which thus tests the robustness of the ANN model. The suppleness of the T and S fields derived from the ANN model provides the freedom to generate a new grid at any desired level with a high degree of accuracy. Comprehensive training, testing and validation exercises were performed to demonstrate the robustness of the model and the consistency of the derived fields. The study points out that the parameters derived from the ANN model using scattered, inhomogeneous in situ data show very good agreement with state-of-the-art WOA climatological data. Using this approach, improvements in ocean climatology can be expected to occur in a synergistic manner with in situ observations. Our investigation of the Indian Ocean reveals that this approach can be extended to model global oceans.  相似文献   

16.
Mapping the water constituents from remotely sensed ocean color data enables a better understanding of the dispersal patterns of river-borne substances in the Gaoping (formerly spelled Kaoping) River, Shelf and Canyon (KPRSC) system. Based on twelve MODIS-Aqua images in the KPRSC region taken in 2005, we apply a newly developed GA-SA approach to derive maps of chlorophyll-a concentration (Chl-a), colored dissolved organic matter (CDOM) and non-algal particle/detritus/mineral (NAP). The results demonstrated that the different characteristics of Chl-a, CDOM and NAP make them ideal tracers for observing large-scale dispersal patterns. With ancillary information of averaged daily precipitation, the daily wind field obtained from QuikSCAT (Quick Scatterometer), and the 8-day composite of the temperature field obtained from MODIS-Aqua, we categorized the surface dispersal patterns as coastal, northwestward and frontal patterns. Also, for the first time, we observed a sudden increase of biomass on a large scale from a pair of ocean color images taken over only a 2-day interval. Another remarkable feature is the interaction between the southeastward flow and the intrusion of the Kuroshio Branch, resulting in complicated patterns with various scales of vortex structures and current fronts. The observed features could be used for model validation of the flow field of the KPRSC system.  相似文献   

17.
In most applications of numerical ocean models, artificial boundaries are introduced to limit the domain. Along such a boundary we need to apply what is often referred to as an open boundary condition (OBC). In this paper a number of local methods used in barotropic ocean models are applied and discussed for the stratified case using a normal mode approach. The OBCs are the simple conditions: clamped, prescribed and zero gradient; the radiation conditions: Camerlengo–O'Brien, Orlanski and a method of characteristics based on linear equations; and a sponge type condition: the flow relaxation scheme. The OBCs have been implemented in a 3-layer ocean model and examples of how the various OBCs perform for three simple flow situations are investigated. The cases are: internal wave radiation, a quasi-steady coastal jet and the response to a storm moving across a strait. It is found that the flow relaxation scheme and the method based on characteristics perform well for the test cases in general, although some of the simpler methods give better results in individual cases.  相似文献   

18.
Various types of floating solar photovoltaic (FPV) devices have been previously proposed, designed and constructed with applications primarily limited to onshore water bodies or near-shore regions with benign environmental conditions. This paper proposes a novel FPV concept which can survive harsh environmental conditions with extreme wave heights above 10 m. This concept uses standardised lightweight semi-submersible floats made of circular materials as individual modules. The floating modules are soft connected with ropes to form an FPV array. We first present the conceptual design of the floats and the connection systems, including hydrostatic, hydrodynamic, and structural assessments of the floats. To verify the motion response performance, we carried out 1:60 scaled model tests for a 2 by 3 array under regular and irregular wave conditions. From the time series and response spectra, the motion characteristics of the array and the mooring responses are analysed in detail. The proposed concept exhibits excellent performances in terms of modular motions with limited wave overtopping and no contact is observed between adjacent modules under the extreme wave conditions. The findings of this study can serve as a valuable reference to developing reliable and cost-effective FPV technologies for offshore conditions.  相似文献   

19.
Measurements of the air–sea fluxes of N2 and O2 were made in winds of 15–57 m s− 1 beneath Hurricane Frances using two types of air-deployed neutrally buoyant and profiling underwater floats. Two “Lagrangian floats” measured O2 and total gas tension (GT) in pre-storm and post-storm profiles and in the actively turbulent mixed layer during the storm. A single “EM-APEX float” profiled continuously from 30 to 200 m before, during and after the storm. All floats measured temperature and salinity. N2 concentrations were computed from GT and O2 after correcting for instrumental effects. Gas fluxes were computed by three methods. First, a one-dimensional mixed layer budget diagnosed the changes in mixed layer concentrations given the pre-storm profile and a time varying mixed layer depth. This model was calibrated using temperature and salinity data. The difference between the predicted mixed layer concentrations of O2 and N2 and those measured was attributed to air–sea gas fluxes FBO and FBN. Second, the covariance flux FCO(z) = wO2′(z) was computed, where w is the vertical motion of the water-following Lagrangian floats, O2′ is a high-pass filtered O2 concentration and (z) is an average over covariance pairs as a function of depth. The profile FCO(z) was extrapolated to the surface to yield the surface O2 flux FCO(0). Third, a deficit of O2 was found in the upper few meters of the ocean at the height of the storm. A flux FSO, moving O2 out of the ocean, was calculated by dividing this deficit by the residence time of the water in this layer, inferred from the Lagrangian floats. The three methods gave generally consistent results. At the highest winds, gas transfer is dominated by bubbles created by surface wave breaking, injected into the ocean by large-scale turbulent eddies and dissolving near 10-m depth. This conclusion is supported by observations of fluxes into the ocean despite its supersaturation; by the molar flux ratio FBO/FBN, which is closer to that of air rather than that appropriate for Schmidt number scaling; by O2 increases at about 10-m depth along the water trajectories accompanied by a reduction in void fraction as measured by conductivity; and from the profile of FCO(z), which peaks near 10 m instead of at the surface.At the highest winds O2 and N2 are injected into the ocean by bubbles dissolving at depth. This, plus entrainment of gas-rich water from below, supersaturates the mixed layer causing gas to flux out of the near-surface ocean. A net influx of gas results from the balance of these two competing processes. At lower speeds, the total gas fluxes, FBO, FBN and FCO(0), are out of the ocean and downgradient.  相似文献   

20.
Vortex-induced vibration (VIV) of a flexible cylinder in oscillatory flow was experimentally investigated in an ocean basin. An intermittent VIV was confirmed to have occurred during the tests. The fatigue damage caused by VIV was calculated based on rainflow counting and a standard S–N curve. There are 3 main observations for fatigue damage from VIV in oscillatory flow: 1) the damage varied significantly with the KC number, which is a unique feature for VIV in oscillatory flow. 2) Fatigue damage at small KC number cases was found to be larger compared to those at large KC numbers owing to the fact that number of vortex shedding cycles per half of the motion cycle is low, and damping within half of the motion cycle will hence become low. The fact that vortices from the previous cycle still are active during the next may also contribute to the large response at small KC numbers. 3) ‘Amplitude modulation’ and ‘mode transition’, two specific features for VIV in oscillatory flow, were found to have a strong influence on fatigue. Fatigue damage has also been calculated by an empirical VIV prediction model assuming that all cases have steady flow at an equivalent velocity. Finally, a simplified method for calculating fatigue damage from VIV in oscillatory flow based on steady flow conditions is proposed. A modification factor diagram is presented, but the scope of the present study is too limited to provide a good basis for a general model for this factor. A general model for how to apply results from constant current analysis to predict fatigue in oscillatory flow will therefore need further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号