首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding how destination choice and business clusters are connected is of great importance for designing sustainable cities, fostering flourishing business clusters, and building livable communities. As sharing locations and activities on social media platforms becomes increasingly popular, such data can reveal destination choice and activity space which can shed light on human-environment relationships. To this end, this research models the relationship between characteristics of business clusters and check-in activities from Los Angeles County, California. Business clusters are analyzed via two lenses: the supply side (employment data by industry) and the demand side (on-line check-in data). Spatial and statistical analyses are performed to understand how land use and transportation network features affect the popularity of the identified clusters and their relationships. Our results suggest that a cluster with more employment opportunities and more types of employment is associated with more check-ins. A business cluster that has access to parks or recreational services is also more popular. A business cluster with a longer road network and better connectivity of roads is associated with more check-ins. The visualization of the common visitors between clusters reveals that there are a few clusters with outstanding strong ties, while most have modest ties with each other. Our findings have implications on the influence of urban design on the popularity of business clusters.  相似文献   

2.
This paper reviews the existing procedures to compute the seasonal factors, growth factors, and the number of automatic traffic recorder stations (ATRs) for developing a statistically reliable traffic counting program. The review is based on, (i) theoretical evaluation of the procedures, (ii) analysis of the results obtained from applying these procedures to extensive real life data, and (iii) experience of past researchers with these methods. The paper primarily deals with existing statistical procedures for determining seasonal factors, since it is believed that these factors play the most important role in estimating Annual Average Daily Traffic (AADTs) from short counts. The procedure of cluster analysis (which is most commonly used to determine seasonal factors) is critically reviewed. The shortcomings of this method motivated the development of a different statistical procedure, based on regression analysis, to determine seasonal factors. It is shown that this newly developed method gives better results than the cluster analysis techniques. Furthermore, separate sections are dedicated to a thorough analysis of determination of number of ATR stations and computation of growth factors.  相似文献   

3.
Previous methods to calculate the minimum number of traffic micro‐simulation runs do not consider multiple measures of performance simultaneously at an overall confidence level, which can lead to unreliable simulation outputs. This paper describes new methodologies for calculating the minimum number of traffic micro‐simulation runs for multivariate estimates at an overall confidence level. Simultaneous confidence intervals obtained from multiple comparisons in statistical theory such as the Bonferroni inequality and simultaneous confidence interval method are used to estimate multiple measures of performance with allowable errors at an overall confidence level. Measures of performance can be means and standard deviations. Results of numerical analysis based on an example corridor suggest that the proposed methods provide improved means of assessing statistical accuracy of multiple measures of performance. Results also indicate that the minimum number of runs is influenced by not only the sample size issue but also the complexity of the traffic system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the optimal deployment of static and dynamic charging infrastructure considering the interdependency between transportation and power networks. Static infrastructure means plug-in charging stations, while the dynamic counterpart refers to electrified roads or charging lanes enabled by charging-while-driving technology. A network equilibrium model is first developed to capture the interactions among battery electric vehicles’ (BEVs) route choices, charging plans, and the prices of electricity. A mixed-integer bi-level program is then formulated to determine the deployment plan of charging infrastructure to minimize the total social cost of the coupled networks. Numerical examples are provided to demonstrate travel and charging plans of BEV drivers and the competitiveness of static and dynamic charging infrastructure. The numerical results on three networks suggest that (1) for individual BEV drivers, the choice between using charging lanes and charging stations is more sensitive to parameters including value of travel time, service fee markup, and battery size, but less sensitive to the charging rates and travel demand; (2) deploying more charging lanes is favorable for transportation networks with sparser topology while more charging stations can be more preferable for those denser networks.  相似文献   

5.
This paper deals with the development of a strategic approach for optimizing the operation of public transport system that considers both user's objective and operator's objective. Passengers of public transport are assumed to seek a minimum wait time to conduct the trips, while on the other hand, operators are concerned with the efficient operation such as minimum fleet size. The average minimum wait time is to be achieved by creating an optimal despatching policy for each vehicle from the terminal. As for efficient operation the utilisation of vehicle should be maximised by having a minimum number of vehicles in operation. User's and operator's objectives are optimized within certain operational constraints such as vehicle capacity to maintain acceptable level of service. The i‐model is contructed in a bi‐level programming form in which the user's objective is minimized by dynamic programming and the operator's objective is minimized by various routing strategies. Furthermore, an algorithm and a contrived example are developed to solve and see the performance of the approach.  相似文献   

6.
The precise estimation of the annual average daily traffic (AADT) is a task of significant interest for many transportation authorities and Departments of Transportation. In this study, three methods are developed to improve the assignment of short‐term counts to seasonal adjustment factor (SAF) groupings: the traditional functional classification, a discriminant analysis (DA), and a new statistical approach based on a weighted coefficient of variation (WCV). The data analyzed within this study are generated from all available continuous counters within the State of Ohio between 2002 and 2006. The analysis is conducted using SAFs that are separately calculated for the total volume and the directional specific volumes of a site. The results show that the directionally based assignment errors are statistically lower at a 95% confidence interval when compared with those generated by the total volume analysis. It is also found that the hourly time‐of‐day factors are more important in the assignment process than the average daily traffic. The directionally based WCV produces a decline in the average mean absolute percentage error (MAPE) over the roadway functional classification by 58% and in the standard deviation of the absolute error (SDAE) by 70%. On the contrary, the directionally based DA lowers the MAPE and the SDAE by 35% and 60%, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
We study the shared autonomous vehicle (SAV) routing problem while considering congestion. SAVs essentially provide a dial-a-ride service to travelers, but the large number of vehicles involved (tens of thousands of SAVs to replace personal vehicles) results in SAV routing causing significant congestion. We combine the dial-a-ride service constraints with the linear program for system optimal dynamic traffic assignment, resulting in a congestion-aware formulation of the SAV routing problem. Traffic flow is modeled through the link transmission model, an approximate solution to the kinematic wave theory of traffic flow. SAVs interact with travelers at origins and destinations. Due to the large number of vehicles involved, we use a continuous approximation of flow to formulate a linear program. Optimal solutions demonstrate that peak hour demand is likely to have greater waiting and in-vehicle travel times than off-peak demand due to congestion. SAV travel times were only slightly greater than system optimal personal vehicle route choice. In addition, solutions can determine the optimal fleet size to minimize congestion or maximize service.  相似文献   

8.
Abstract

In order for traffic authorities to attempt to prevent drink driving, check truck weight limits, driver hours and service regulations, hazardous leaks from trucks, and vehicle equipment safety, we need to find answers to the following questions: (a) What should be the total number of inspection stations in the traffic network? and (b) Where should these facilities be located? This paper develops a model to determine the locations of uncapacitated inspection stations in a traffic network. We analyze two different model formulations: a single-objective optimization problem and a multi-objective optimization problem. The problems are solved by the Bee Colony Optimization (BCO) method. The BCO algorithm belongs to the class of stochastic swarm optimization methods, inspired by the foraging habits of bees in the natural environment. The BCO algorithm is able to obtain the optimal value of objective functions in all test problems. The CPU times required to find the best solutions by the BCO are found to be acceptable.  相似文献   

9.
As charging-while-driving (CWD) technology advances, charging lanes can be deployed in the near future to charge electric vehicles (EVs) while in motion. Since charging lanes will be costly to deploy, this paper investigates the deployment of two types of charging facilities, namely charging lanes and charging stations, along a long traffic corridor to explore the competitiveness of charging lanes. Given the charging infrastructure supply, i.e., the number of charging stations, the number of chargers installed at each station, the length of charging lanes, and the charging prices at charging stations and lanes, we analyze the charging-facility-choice equilibrium of EVs. We then discuss the optimal deployment of charging infrastructure considering either the public or private provision. In the former, a government agency builds and operates both charging lanes and stations to minimize social cost, while in the latter, charging lanes and stations are assumed to be built and operated by two competing private companies to maximize their own profits. Numerical experiments based on currently available empirical data suggest that charging lanes are competitive in both cases for attracting drivers and generating revenue.  相似文献   

10.
In this work we propose a mechanism to optimize the capacity of the main corridor within a railway network with a radial-backbone or X-tree structure. The radial-backbone (or X-tree) structure is composed of two types of lines: the primary lines that travel exclusively on the common backbone (main corridor) and radial lines which, starting from the common backbone, branch out to individual locations. We define possible line configurations as binary strings and propose operators on them for their analysis, yielding an effective algorithm for generating an optimal design and train frequencies. We test our algorithm on real data for the high speed line Madrid–Seville. A frequency plan consistent with the optimal capacity is then proposed in order to eliminate the number of transfers between lines as well as to minimize the network fleet size, determining the minimum number of vehicles needed to serve all travel demand at maximum occupancy.  相似文献   

11.
This study investigates the cost competitiveness of different types of charging infrastructure, including charging stations, charging lanes (via charging-while-driving technologies) and battery swapping stations, in support of an electric public transit system. To this end, we first establish mathematical models to investigate the optimal deployment of various charging facilities along the transit line and determine the optimal size of the electric bus fleet, as well as their batteries, to minimize total infrastructure and fleet costs while guaranteeing service frequency and satisfying the charging needs of the transit system. We then conduct an empirical analysis utilizing available real-world data. The results suggest that: (1) the service frequency, circulation length, and operating speed of a transit system may have a great impact on the cost competitiveness of different charging infrastructure; (2) charging lanes enabled by currently available inductive wireless charging technology are cost competitive for most of the existing bus rapid transit corridors; (3) swapping stations can yield a lower total cost than charging lanes and charging stations for transit systems with high operating speed and low service frequency; (4) charging stations are cost competitive only for transit systems with very low service frequency and short circulation; and (5) the key to making charging lanes more competitive for transit systems with low service frequency and high operating speed is to reduce their unit-length construction cost or enhance their charging power.  相似文献   

12.

In urban areas where transit demand is widely spread, passengers may be served by an intermodal transit system, consisting of a rail transit line (or a bus rapid transit route) and a number of feeder routes connecting at different transfer stations. In such a system, passengers may need one or more transfers to complete their journey. Therefore, scheduling vehicles operating in the system with special attention to reduce transfer time can contribute significantly to service quality improvements. Schedule synchronization may significantly reduce transfer delays at transfer stations where various routes interconnect. Since vehicle arrivals are stochastic, slack time allowances in vehicle schedules may be desirable to reduce the probability of missed connections. An objective total cost function, including supplier and user costs, is formulated for optimizing the coordination of a general intermodal transit network. A four-stage procedure is developed for determining the optimal coordination status among routes at every transfer station. Considering stochastic feeder vehicle arrivals at transfer stations, the slack times of coordinated routes are optimized, by balancing the savings from transfer delays and additional cost from slack delays and operating costs. The model thus developed is used to optimize the coordination of an intermodal transit network, while the impact of a range of factors on coordination (e.g., demand, standard deviation of vehicle arrival times, etc) is examined.  相似文献   

13.
14.
Electrical vehicles (EVs) have become a popular green transportation means recently because they have lower energy consumption costs and produce less pollution. The success of EVs relies on technologies to extend their driving range, which can be achieved by the good deployment of EV recharging stations. This paper considers a special EV network composed of fixed routes for an EV fleet, where each EV moves along its own cyclic tour of depots. By setting up a recharging station on a depot, an EV can recharge its battery for no longer than a pre-specified duration constraint. We seek an optimal deployment of recharging stations and an optimal recharging schedule for each EV such that all EVs can continue their tours in the planning horizon with minimum total costs. To solve this difficult location problem, we first propose a mixed integer program (MIP) formulation and then derive four new valid inequalities to shorten the solution time. Eight MIP models, which were created by adding different combinations of the four valid inequalities to the basic model, have been implemented to test their individual effectiveness and synergy over twelve randomly generated EV networks. Valuable managerial insights into the usage of valid inequalities and the relations between the battery capacity and the total costs, number of recharging facilities to be installed, and running time are analyzed.  相似文献   

15.
To become a mass-market product, compressed natural gas (CNG) cars will need a dense network of filling stations. The Swiss natural gas industry plans to invest in 350 additional CNG stations to supplement the existing 50 sites. Cost–benefit analysis is used to define the optimal locations for these among the existing 3470 petrol filling stations. It is found using two simulations looking at equitable location of sites and socially optimal ones, that the investment in additional CNG infrastructure is unlikely to be socially advantageous.  相似文献   

16.
This paper presents a formulation and solution for the train connection services (TCSs) problem in a large-scale rail network in order to determine the optimal freight train services, the frequency of services, and the distribution of classification workload among yards. TCS problem is modeled as a bi-level programming problem. The upper-level is intended to find an optimal train connection service, and the lower-level is used for assigning each shipment to a sequence of train services and determining the frequency of services.Our model solves the TCS problem of the China railway system, which is one of the largest railway systems in the world. The system consists of 5544 stations, and over 520,000 shipments using this system for a year period. A subnetwork is defined with 127 yards having some minimum level of reclassification resources and 14,440 demands obtained by aggregating 520,000 shipments to the subnetwork. We apply a simulated annealing algorithm to the data for optimal computation after pre-processing and get an excellent result. Comparing our optimal solution with the existing plan result, there are improvements of about 20.8% in the total cost.  相似文献   

17.
Zhang  Wenbo  Le  Tho V.  Ukkusuri  Satish V.  Li  Ruimin 《Transportation》2020,47(2):971-996

The growth of app-based taxi services has disrupted the urban taxi market. It has seen significant demand shift between the traditional and emerging app-based taxi services. This study explores the influencing factors for determining the ridership distribution of taxi services. Considering the spatial, temporal, and modal heterogeneity, we propose a mixture modeling structure of spatial lag and simultaneous equation model. A case study is designed with 6-month trip records of two traditional taxi services and one app-based taxi service in New York City. The case study provides insights on not only the influencing factors for taxi daily ridership but also the appropriate settings for model estimation. In specific, the hypothesis testing demonstrates a method for determining the spatial weight matrix, estimation strategies for heterogeneous spatial and temporal units, and the minimum sample size required for reliable parameter estimates. Moreover, the study identifies that daily ridership is mainly influenced by number of employees, vehicle ownership, density of developed area, density of transit stations, density of parking space, bike-rack density, day of the week, and gasoline price. The empirical analyses are expected to be useful not only for researchers while developing and estimating models of taxi ridership but also for policy makers while understanding interactions between the traditional and emerging app-based taxi services.

  相似文献   

18.
We propose an optimization model based on vehicle travel patterns to capture public charging demand and select the locations of public charging stations to maximize the amount of vehicle-miles-traveled (VMT) being electrified. The formulated model is applied to Beijing, China as a case study using vehicle trajectory data of 11,880 taxis over a period of three weeks. The mathematical problem is formulated in GAMS modeling environment and Cplex optimizer is used to find the optimal solutions. Formulating mathematical model properly, input data transformation, and Cplex option adjustment are considered for accommodating large-scale data. We show that, compared to the 40 existing public charging stations, the 40 optimal ones selected by the model can increase electrified fleet VMT by 59% and 88% for slow and fast charging, respectively. Charging demand for the taxi fleet concentrates in the inner city. When the total number of charging stations increase, the locations of the optimal stations expand outward from the inner city. While more charging stations increase the electrified fleet VMT, the marginal gain diminishes quickly regardless of charging speed.  相似文献   

19.
This paper develops a fuzzy-neural model (FNM) to predict the traffic flows in an urban street network, which has long been considered a major element in the responsive urban traffic control systems. The FNM consists of two modules: a gate network (GN) and an expert network (EN). The GN classifies the input data into a number of clusters using a fuzzy approach, and the EN specifies the input–output relationship as in a conventional neural network approach. While the GN groups traffic patterns of similar characteristics into clusters, the EN models the specific relationship within each cluster. An online rolling training procedure is proposed to train the FNM, which enhances its predictive power through adaptive adjustments of the model coefficients in response to the real-time traffic conditions. Both simulation and real observation data are used to demonstrative the effectiveness of the method.  相似文献   

20.
Recent research has studied the existence and the properties of a macroscopic fundamental diagram (MFD) for large urban networks. The MFD should not be universally expected as high scatter or hysteresis might appear for some type of networks, like heterogeneous networks or freeways. In this paper, we investigate if aggregated relationships can describe the performance of urban bi-modal networks with buses and cars sharing the same road infrastructure and identify how this performance is influenced by the interactions between modes and the effect of bus stops. Based on simulation data, we develop a three-dimensional vehicle MFD (3D-vMFD) relating the accumulation of cars and buses, and the total circulating vehicle flow in the network. This relation experiences low scatter and can be approximated by an exponential-family function. We also propose a parsimonious model to estimate a three-dimensional passenger MFD (3D-pMFD), which provides a different perspective of the flow characteristics in bi-modal networks, by considering that buses carry more passengers. We also show that a constant Bus–Car Unit (BCU) equivalent value cannot describe the influence of buses in the system as congestion develops. We then integrate a partitioning algorithm to cluster the network into a small number of regions with similar mode composition and level of congestion. Our results show that partitioning unveils important traffic properties of flow heterogeneity in the studied network. Interactions between buses and cars are different in the partitioned regions due to higher density of buses. Building on these results, various traffic management strategies in bi-modal multi-region urban networks can then be integrated, such as redistribution of urban space among different modes, perimeter signal control with preferential treatment of buses and bus priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号