首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
This paper focuses on the safety of high-speed trains under strong crosswind conditions. A new active control strategy is proposed based on the adaptive predictive control theory. The new control strategy aims at adjusting the attitudes of a train by controlling the new-type intelligent giant magnetostrictive actuator (GMA). It combined adaptive control with dynamic matrix control; parameters of predictive controller was real-time adjusted by online distinguishing to enhance the robustness of the control algorithm. On this basis, a correction control algorithm is also designed to regulate the parameters of predictive controller based on the step response of a controlled objective. Finally, the simulation results show that the proposed control strategy can adjust the running attitudes of high-speed trains under strong crosswind conditions; they also indicate that the new active control strategy is effective and applicable in improving the safety performance of a train based on a host–target computer technology provided by Matlab/Simulink.  相似文献   

2.
Wheel–rail wear is one of the important problems in the railway industry, especially from the point of safety, maintenance, and replacement cost. To investigate this phenomenon, it is necessary to simulate the wheel–rail interaction. The simulation results and in particular the wear number is not tangible enough to explain the wear condition of the system. For one set of simulation performed on two different railway systems one could obtain the same wear numbers, of say 100, while having two completely different wear rates. In order to have a better understanding of the wear condition, it is proposed to convert the wear numbers to wear rates. In doing so by measuring the wear rate, one determines the rate at which the wheel flange thickness is reduced. In this research, a new approach has been proposed to determine the wheel wear rate through multi-body dynamic analysis and simulation and the field measurements carried out on the fleet of one of Tehran's subway lines. This procedure could also be expanded to determine a wear criterion for specific lines and their fleets. Having this wear criterion would provide a better understanding of the simulation results either prior to the construction of railway lines or for the presently used ones. In other words, designers can simulate a railway line, not being constructed yet, and with a good approximation determine the critical points along the line with high wear rates, and make necessary modifications to decrease the wear.  相似文献   

3.
In this study, we developed a comprehensive three-dimensional vehicle–track coupled dynamics model considering the traction drive system and axle box bearing. In this model, dynamic interactions between the axle box bearing and other components, such as the wheelset and bogie frame, are considered based on a detailed analysis of the structural properties and working mechanism of the axle box bearing. A few complicated dynamic excitations, such as the time-varying mesh stiffness of gears, time-varying stiffness of bearing, bearing gaps and track irregularities, are considered. Then, the dynamic responses of the vehicle–track system are demonstrated via numerical simulations based on the established dynamics model. The results indicate that the traction drive system and track irregularities can significantly influence the dynamic interactions of the axle box bearing. The necessity of considering the excitation caused by gear meshing and track irregularities when assessing the dynamic performance of the axle box bearing is demonstrated.  相似文献   

4.
An innovative structure for a heavy haul coupler with an arc surface contact and restoring bumpstop is proposed. This coupler has a small lateral force at a small yaw angle and a limitable yaw angle to ensure an allowable coupler lateral force under intense compressive force. The main structural characteristic of the combined contact coupler is a lateral movable follower with an appropriate friction coefficient of 0.06–0.08 and a slide block with a single freedom of longitudinal movement. In order to verify and simulate the performances, a multi-body dynamics model with four heavy haul locomotives and three detailed couplers was established to simulate the process of emergency braking. In addition, the coupler yaw instability and wheel set lateral forces were tested in order to investigate the effect of relevant parameters on the coupler performances. The combined contact coupler is suitable for heavy haul train for a good dynamic performance.  相似文献   

5.
The polygonal wear around the wheel circumference could pose highly adverse influences on the wheel/rail interactions and thereby the performance of the vehicle system. In this study, the effects of wheel polygonalisation on the dynamic responses of a high-speed rail vehicle are investigated through development and simulations of a comprehensive coupled vehicle/track dynamic model. The model integrates flexible slab track, wheelsets and axle boxes subsystem models so as to account for elastic deformations caused by impact loads induced by the wheel polygonalisation. A field-test programme was undertaken to acquire the polygonal wear profile and axle box acceleration response of a high-speed train, and the data are used to demonstrate the validity of the coupled vehicle/track system model. Subsequently, the effects of wheel polygonalisation are evaluated in terms of wheel/rail impact forces, axle box vertical acceleration and dynamic stress developed in the axle considering different amplitudes and harmonic orders of the polygonal wear. The results suggest that the high-order wheel polygonalisation can give rise to high-frequency impact loads at the wheel/rail interface, and excite some of the vibration modes of the wheelset and the axle box leading to high-magnitude axle box acceleration and dynamic stress in the wheelset axle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号