共查询到4条相似文献,搜索用时 0 毫秒
1.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):1296-1314
This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time–frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs. 相似文献
2.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):1817-1834
This paper presents a detailed investigation conducted into the mechanism of the polygonal wear of metro train wheels through extensive experiments conducted at the sites. The purpose of the experimental investigation is to determine from where the resonant frequency that causes the polygonal wear of the metro train wheels originates. The experiments include the model tests of a vehicle and its parts and the tracks, the dynamic behaviour test of the vehicle in operation and the observation test of the polygonal wear development of the wheels. The tracks tested include the viaducts and the tunnel tracks. The structure model tests show that the average passing frequency of a polygonal wheel is approximately close to the first bending resonant frequency of the wheelset that is found by the wheelset model test and verified by the finite element analysis of the wheelset. Also, the dynamic behaviour test of the vehicle in operation indicates the main frequencies of the vertical acceleration vibration of the axle boxes, which are dominant in the vertical acceleration vibration of the axle boxes and close to the passing frequency of a polygonal wheel, which shows that the first bending resonant frequency of the wheelset is very exciting in the wheelset operation. The observation test of the polygonal wear development of the wheels indicates an increase in the rate of the polygonal wear of the wheels after their re-profiling. This paper also describes the dynamic models used for the metro vehicle coupled with the ballasted track and the slab track to analyse the effect of the polygonal wear of the wheels on the wheel/rail normal forces. 相似文献
3.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(9):1211-1231
This paper presents the results of a detailed investigation of the effects of rail corrugation on the dynamic behaviour of metro rail fastenings, obtained from extensive experiments conducted on site and from simulations of train–track dynamics. The results of tests conducted with a metro train operating on corrugated tracks are presented and discussed first. A three-dimensional (3D) model of the metro train and a slab track was developed using multi-body dynamics modelling and the finite element method to simulate the effect of rail corrugation on the dynamic behaviour of rail fastenings. In the model, the metro train is modelled as a multi-rigid body system, and the slab track is modelled as a discrete elastic support system consisting of two Timoshenko beams for the rails, a 3D solid finite element (FE) model for the slabs, periodic discrete viscoelastic elements for the rail fastenings that connect the rails to the slabs, and uniformly viscoelastic elements for the subgrade beneath the slabs. The proposed train–track model was used to investigate the effects of rail corrugation on the dynamic behaviour of the metro track system and fastenings. An FE model for the rail fastenings was also developed and was used to calculate the stresses in the clips, some of which rupture under the excitation of rail corrugation. The results of the field experiments and dynamics simulations provide an insight into the root causes of the fracture of the clips, and several remedies are suggested for mitigating strong vibrations and failure of metro rail fastening systems. 相似文献
4.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):1216-1241
The vehicle stability involves many aspects, such as the anti-rollover stability in extreme steering operations and the vehicle lateral stability in normal steering operations. The relationships between vehicle stabilities in extreme and normal circumstances obtain less attention according to the present research works. In this paper, the coupling interactions between vehicle anti-rollover and lateral stability, as well as the effect of road excitation, are taken into account on the vehicle rollover analysis. The results in this paper indicate that some parameters influence the different vehicle stabilities diversely or even contradictorily. And it has been found that there are contradictions between the vehicle rollover mitigation performance and the lateral stability. The direct cause for the contradiction is the lateral coupling between tyres and road. Tyres with high adhesion capacity imply that the vehicle possesses a high performance ability to keep driving direction, whereas the rollover risk of this vehicle increases due to the greater lateral force that tyres can provide. Furthermore, these contradictions are intensified indirectly by the vertical coupling between tyres and road. The excitation from road not only deteriorates the tyres’ adhesive condition, but also has a considerable effect on the rollover in some cases. 相似文献