共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
为提高混合动力车辆的燃油经济性和降低尾气排放,根据混合动力车辆2个或2个以上能量流之间的功率分流分配和能量利用情况,提出了最小瞬时等效燃油消耗量策略.通过分析串联式液压混合动力传动能量流关系,以储能元件蓄能器的虚拟等效燃油消耗为准则,建立了液压混合动力车辆最小瞬时等效燃油消耗模型.对液压混合动力车辆能量管理进行了研究,并以某型公共汽车参数为例,运用计算机软件通过城市循环工况第1部分和公路循环工况对使用该策略的液压混合动力车辆燃油经济性进行了仿真计算.仿真结果表明:采用最小瞬时等效燃油消耗策略的液压混合动力车辆的燃油经济性改善率接近30%;采用最小瞬时等效燃油消耗策略在提高车辆节能效果上具有较明显的优势. 相似文献
3.
4.
5.
文章针对一款12米的插电式串联混合动力客车,在已知工况的基础上,提出了一种凸优化能量管理优化策略。建立相应的整车、凸优化模型,基于MATLAB进行仿真分析,得到了全局最优能耗成本;另外,SOC轨迹近似呈线性变化,在行程终止时达到设定的目标SOC值,充分体现了优先用电的原则,提高了整车经济性。 相似文献
6.
基于粒子群算法的Plug-in混合动力汽车能量管理策略优化研究 总被引:1,自引:1,他引:1
基于对混合动力汽车能量管理策略优化的目的,建立了丰田Prius Plug-in混合动力汽车的MATLAB/Simulink数学模型,用数学公式描述了系统优化控制问题,采用粒子群优化算法对该包含众多约束条件的非线性优化问题进行了求解,利用PSAT专业软件对比分析了基本型优化控制算法、改进型优化控制算法和规则控制算法等的控制效果及燃油经济性。结果表明,经过优化后的Plug-in混合动力汽车在不牺牲汽车各项性能的前提下能提高动力系统工作效率。 相似文献
7.
8.
基于对混合动力汽车能量管理策略优化的目的,建立了丰田PnusPlug-in混合动力汽车的MATLAB/Simulink数学模型,用数学公式描述了系统优化控制问题,采用粒子群优化算法对该包含众多约束条件的非线性优化问题进行了求解,利用PSAT专业软件对比分析了基本型优化控制算法、改进型优化控制算法和规则控制算法等的控制效果及燃油经济性。结果表明,经过优化后的Plug-in混合动力汽车在不牺牲汽车各项性能的前提下能提高动力系统工作效率。 相似文献
9.
针对双轴并联式液压混合动力车辆(PHHV),以蓄能器荷电状态(SOC)和发动机瞬时燃油质量流量m8f为输入量,发动机需求功率比例φ为输出量,以油耗最小为目标函数设计了模型预测控制器(MPC)进行PHHV的能量管理。基于MATLAB/Simulink平台搭建了包括需求功率计算、发动机、蓄能器和泵/马达等主要部件的PHHV车辆模型并进行MPC能量管理。研究结果表明,在美国道路城市循环工况(UDDS)下,MPC管理下的PHHV能充分发挥混合动力的特点,合理调节分配发动机和液压单元的需求功率,降低行驶过程的总油耗。 相似文献
10.
目前,电动汽车研制的难点之一是传统电动机的转矩不够大,不得不使用变速机械来满足电动汽车起动和爬大坡的大转矩需求。本技术方案就是使用高于传统电动机常规电压的宽范围系列阶梯电压来驱动特制的轮毂电机车轮动力系统,以彻底解决当前研制电动汽车的这一难点,从而使现代电动汽车能早日大量使用,造福于人类。 相似文献
11.
轮毂液驱车辆是在传统重型商用车基础上加装一套轮毂液压驱动系统,使其在低附着路面下具有较高的牵引性能。在轮毂液驱车辆助力模式下,针对液压系统油液温度升高引起的系统泄漏量增加、控制精度降低等问题,提出一种温度补偿控制策略。根据考虑系统损失的流量连续性原理和轮速跟随思想,提出了基于温度补偿的多因素泵排量控制策略,并通过MATLAB/Simulink和AMESim联合仿真平台对该控制策略进行了验证。仿真结果表明:温度补偿策略补偿了系统的流量损失,满足了实际轮速跟随需求,提高了总牵引力。同时,通过HIL试验证明了温度补偿策略在实车上依然能达到仿真时的控制效果,对轮毂液驱车辆的实际开发具有理论指导意义。 相似文献
12.
为了优化轻度混合控制策略下的CFA6470混合动力电动汽车能量总成控制系统,设计了能量总成控制器,并将其分成5个模块;分析了节气门开启角与车辆行驶挡位的优化方法,轻度混合时的能量分配策略;提出了基于能量守恒原理的电池组荷电状态估计方法,并根据ECE-EUDC工况,在2种不同的期望车速下对设计的控制系统进行了仿真。仿真结果表明:在发动机的期望工况下,所设计的能量总成控制系统能够实现能量在发动机、驱动电机以及电池组之间的合理分配,电池组的荷电状态变化规律与车辆行驶状态相符合。 相似文献
13.
为了优化等效燃油最小能量管理策略的节油效果,以适用于工程批量应用为导向,制定基于增益功率燃油系数的混合动力汽车(HEV)能量管理策略。基于瞬时优化原理,提出基于增益功率燃油系数的工作模式决策机制,根据电机发电或电动引起的发动机功率与燃油消耗率的变化关系,分别给出电机充电和放电模式下增益功率燃油系数的计算方法。考虑发动机扭矩瞬态快速变化对油耗的影响和电机及电池包充放电效率特性,提出发动机高效区域扭矩滞回控制方法,建立基于增益功率燃油系数的能量管理策略算法架构。基于MATLAB/Simulink搭建控制策略软件模型,通过转鼓试验台进行实车试验验证。研究结果表明:相对于等效燃油最小能量管理策略,基于增益功率燃油系数的能量管理策略提升了节油率和舒适性,在全球轻型汽车测试循环(WLTC)工况下的百公里油耗降低了约4.8%,发动机的启停次数降低了约53%;相对于有效燃油消耗率(BSFC)最优工作点控制方法,发动机高效区域滞回控制方法降低百公里油耗约1.8%;与采用基于动态规划的全局优化能量管理策略的仿真结果对比,在不能提前预知工况的条件下,制定的能量管理策略在WLTC工况与新标欧洲测试循环(NEDC)工况下的油耗与理论最优值差距均较小。 相似文献
14.
分析简单混联式混合动力客车动力系统的结构;基于混合动态系统理论制定能量管理策略,并且通过仿真将该方案与原车进行比较.仿真结果表明,采用该方案的车辆动力性有所改善,燃油经济性有显著提高. 相似文献
15.
为了提高插电式混合动力汽车(PHEV)在电量保持下的燃油经济性,并解决插电式混合动力汽车在运行过程中动力元件效率对系统能量利用率影响的问题,制定了系统效率最优的控制策略。以PHEV关键动力部件的测试数据为基础,建立发动机、驱动电机、无级变速器(CVT)以及动力电池等关键部件的效率数值模型,并考虑了温度及荷电状态(SOC)对动力电池充放电功率的影响。设计以混合动力系统效率最优为适应度评价函数,将CVT速比、发动机转矩作为优化变量,以车速、加速度和SOC为状态变量,在动力性指标的约束下,运用遗传算法进行迭代寻优,PHEV的系统效率在第20代左右收敛于全局最优值。同时发动机转矩和CVT速比通过多代遗传进化,较快收敛于最佳值。将相关优化结果与车速、加速度拟合成相应的三维控制数表,综合数值建模和试验测试数据建模的方法,基于MATLAB/Simulink搭建插电式混合动力汽车整车控制策略仿真模型,采用新欧洲行驶循环工况进行仿真验证。结果表明:插电式混合动力汽车在电量保持模式下,利用遗传算法优化的系统效率最优控制策略相比优化前,动力电池SOC运行更为平稳,CVT效率有所提升,驱动电机及发动机转矩分配更为合理;百公里燃油消耗量从优化前的5.2 L降至4.5 L,燃油经济性提升了13.5%。 相似文献
16.