首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The percentage of the population being served by a transit system in a metropolitan region is a key system performance measure but depends heavily on the definition of service area. Observing existing service areas can help identify transit system gaps and redundancies. In the public transit industry, buffers at 400 m (0.25 miles) around bus stops and 800 m (0.5 miles) around rail stations are commonly used to identify the area from which most transit users will access the system by foot. This study uses detailed OD survey information to generate service areas that define walking catchment areas around transit services in Montreal, Canada. The 85th percentile walking distance to bus transit service is found to be around 524 m for home-based trip origins, 1,259 m for home-based commuter rail trip origins. Yet these values are found to vary based on our analysis using two statistical models. Walking distances vary based on route and trip qualities (such as type of transit service, transfers and wait time), as well as personal, household, and neighbourhood characteristics. Accordingly, service areas around transit stations should vary based on the service offered and attributes of the people and places served. The generated service areas derived from the generalized statistical model are then used to identify gaps and redundancies at the system and route level using Montreal region as an example. This study can be of benefit to transport engineers and planners trying to maximize transit service coverage in a region while avoiding oversupply of service.  相似文献   

2.
A well-designed service plan efficiently utilizes its infrastructure and ensures an acceptable level of service stability with consideration of potential incidents that disturb or disrupt the rail transit services. To perform service evaluation, an integrated process combining capacity, resource usage, and system reliability is required to quantify service efficiency and stability in a consistent way. This study adopts capacity-based indices, “capacity utilization” and “expected recovery time”, as the attributes for service efficiency and stability, and develops a comprehensive evaluation framework with three corresponding modules to incorporate capacity, service plan, and system reliability and maintainability simultaneously. The capacity analysis module computes the rail transit capacities under normal and degraded operations. The reliability module classifies and fits the proper reliability and maintainability distributions to the historical interruption data. The service efficiency and stability module analyzes the results of the previous two modules and evaluates the service efficiency and stability of rail transit service plans. Empirical results show that the established evaluation framework can not only evaluate the service efficiency and stability but also identify critical sections and time slots. This tool can help rail transit operators rapidly assess their operational changes and investment strategies related to efficiency and stability so as to provide efficient and stable services to their customers.  相似文献   

3.
This paper intends to demonstrate that the performance indicator analysis technique can be successfully used as a diagnostic tool to identify operational inefficiency and ineffectiveness at the route level of transit operation. The technique has been applied on 14 bus routes of Bangkok Mass Transit Authority to reveal the inter-route differences in operational efficiency and effectiveness. Twenty performance indicators relating to costs of services, fuel consumption, staff ratio, crew productivity, fleet utilization, service output per bus, daily revenues, etc., were selected to represent the resource efficiency, resource effectiveness and service effectiveness of the bus system. Results of the analyses revealed that considerable variations existed across the routes against many of these 20 selected indicators. These included variations in terms of labor and capacity utilization, maintenance expenditure, etc., many of which can be improved through suitable managerial measures. Based on these findings, specific recommendations have been made for improvement in the deficient areas that are considered to be within the operator domain. These indicators also provide a basis for comparison over time, with other operators and standards. A ranking scale was also developed to determine the over all attractiveness of the routes.  相似文献   

4.
In spite of a broad consensus among transportation analysts that bus rapid transit, whether operating on exclusive rights-of-way or on uncongested high occupancy vehicle lanes or general purpose limited access facilities, provides higher performance and has significantly lower costs per passenger trip than rail transit in medium and low density cities, nearly all Sunbelt cities are building or planning heavy or light rail systems. This paper reviews previous studies of the cost-effectiveness of heavy and light rail transit with bus-rapid transit and the growing experience with busways and transitways and concludes, once again, that some form of bus rapid transit would be a far more effective way of providing improved transit in these cities than heavy or light rail transit. Not only would bus rapid transit be substantially cheaper, but it would provide a higher quality of service than light or heavy rail transit for virtually all users. Finally, the paper speculates on the reasons for the continued, “blind” commitment to rail transit by policymakers in Sunbelt cities and on the refusal of policymakers in all but a few of these cities to even consider bus rapid transit.  相似文献   

5.

New transit capital expenditures are typically evaluated in isolation from the transit/transport systems to which they belong. Problems with reporting performance elements such as ridership and costs are discussed. A focus on evaluating the total transport systems impact of new transit project implementation is called for. On this basis, new US rail transit systems have generally performed poorly. Total transit ridership has generally shown only minimal improvements and, at times, has declined. Financial performance has been disappointing in most cases, particularly when understood in the context of the additional system costs imposed through the reconfiguration of bus networks to serve the new rail systems. Low-cost approaches to improving basic transit services can often be more effective than either rail or bus capital-based projects. An obsession with technology leads to the wrong questions being asked. We should instead start inquiry with the study of needs.  相似文献   

6.
The complexities of urban transportation networks where multiple modes with different characteristics and needs travel in combination with constraints on space and funding make the sustainable management of these systems a challenge. In order to improve transit service, space (e.g., dedicated bus lanes) and time (e.g., transit signal priority strategies) Transit Preferential Treatments (TPT) are deployed to improve transit operations. The objective of this paper is to develop an analytical model that allows for a person-based evaluation of alternative TPTs when considered individually and in combination. In particular, the analytical model is developed to assess person delay and person discharge flow at any intersection that is part of a signalized arterial, where auto arrivals are in platoons. The performance of TPTs is evaluated using both the analytical model and through microsimulation tests on two intersections of San Pablo Avenue in Berkeley, CA. Space TPTs such as dedicated bus lanes and queue jumper lanes are beneficial in reducing bus person delay when provided in addition to the existing lanes; however, the effectiveness of time TPTs such as green extension depends on the level of auto demand in combination with signal settings. Changes in person discharge flow are not significant for any of the treatments tested with the exception of the bus lane substitution with and without green extension, which led to a significant decrease in person discharge flow. Increased bus frequency increases the effectiveness of transit signal priority in reducing total and bus person delay. The analytical model results produce ranking outcomes that are comparable with the microsimulation ones and therefore, the model may be used for a quantitative evaluation of TPTs without the need for data intensive and time consuming calibration efforts required for microsimulation models. The developed model can be used to guide infrastructure and investment decisions on where such TPTs should be implemented and under what conditions space TPTs should be combined with time TPTs to improve person mobility.  相似文献   

7.
In 1987, the NSW Government commenced deregulation of the long-distance bus industry in NSW. This immediately led to greater inter-modal competition and contestability within the context of changing passenger markets.This study utilises categorical data analysis methods to examine the emerging passenger markets of inter-modal competitors (bus and rail) and to assess the relative importance of socioeconomic and travel related variables which affect the use of bus and rail services along the high volume Sydney-Canberra and Sydney-North Coast corridors.Conclusions from the study indicate varied passenger markets within a relatively new contestable environment which are mode and corridor specific. Results are indicative of the need for competitors to develop marketing strategies conducive to the demands of the travelling public in order to enhance viability and commercial opportunities.  相似文献   

8.
Public transit systems with high occupancy can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but current transit systems have not been designed to reduce environmental impacts. This motivates the study of the benefits of design and operational approaches for reducing the environmental impacts of transit systems. For example, transit agencies may replace level-of-service (LOS) by vehicle miles traveled (VMT) as a criterion in evaluating design and operational changes. In previous work, we explored the unintended consequences of lowering transit LOS on emissions in a single-technology transit system. Herein, we extend the analysis to account for a more realistic case: a transit system with a hierarchical structure (trunk and feeder lines) providing service to a city where demand is elastic. By considering the interactions between the trunk and the feeder systems, we provide a quantitative basis for designing and operating integrated urban transit systems that can reduce GHG emissions and societal costs. We find that highly elastic transit demand may cancel emission reduction potentials resulting from lowering LOS, due to demand shifts to lower occupancy vehicles. However, for mass transit modes, these potentials are still significant. Transit networks with buses, bus rapid transit or light rail as trunk modes should be designed and operated near the cost-optimal point when the demand is highly elastic, while this is not required for metro. We find that the potential for unintended consequences increases with the size of the city. Our results are robust to uncertainties in the costs and emissions parameters.  相似文献   

9.
This paper describes a set of specialized spreadsheets that model the cost and performance of transit system options including light rail transit, guideway bus, express bus, and ride sharing. These spreadsheets are demonstrated by comparing a guideway bus (GWB) transit system and a light rail transit (LRT) system proposed for construction in an active rail corridor. The comparisons for assumed levels of transit ridership include guideway geometry, travel time, headways, vehicle requirements, grade crossing protection, and capital and operating costs. The planned GWB system runs on an exclusive dual guideway in the rail right-of-way, and the alternative LRT system operates on the existing rails with new bridges and track as needed for a dual guideway system. The analysis compares the two options for mode splits between 0.5% and 50%. Results show that while both options have approximately the same travel time, the GWB system costs approximately 30% less than the LRT system. The cost difference results primarily from lower GWB vehicle purchase and operating costs. The spreadsheets are available through the McTrans Center at the University of Florida, Gainesville, Florida.  相似文献   

10.
A model is developed for jointly optimizing the characteristics of a rail transit route and its associated feeder bus routes in an urban corridor. The corridor demand characteristics are specified with irregular discrete distributions which can realistically represent geographic variations. The total cost (supplier plus user cost) of the integrated bus and rail network is minimized with an efficient iterative method that successively substitutes variable values obtained through classical analytic optimization. The optimized variables include rail line length, rail station spacings, bus headways, bus stop spacings, and bus route spacing. Computer programs are designed for optimization and sensitivity analysis. The sensitivity of the transit service characteristics to various travel time and cost parameters is discussed. Numerical examples are presented for integrated transit systems in which the rail and bus schedules may be coordinated.  相似文献   

11.
This paper analyzes factors that influence the mode choice for trips between home and light rail stations, an often neglected part of a person’s trip making behavior. This is important for transit planning, demand modeling, and transit oriented development. Using transit survey data describing St. Louis MetroLink riders in the United States, this study found that some of the factors associated with increased shares of walking relative to other modes were full-time student status, higher income transit riders, and trips made during the evening. It was also found that crime at stations had an impact. In particular, crime made female transit riders more likely to be picked-up/dropped-off at the station. Females are more likely to be picked-up or dropped-off at night. Bus availability and convenience showed that transit riders that have a direct bus connection to a light rail station were more likely to use the bus. Private vehicle availability was strongly associated with increased probability of drive and park, when connecting to light rail.  相似文献   

12.
Abstract

Recent developments in the light rapid transit sector have introduced transit modes that are attempting to imitate the performance of others, e.g. buses with tram-like characteristics. The boundaries between existing definitions of what is a bus, tram or train are becoming blurred. For transport studies and practice this requires a review of how we define modes. This is not just a matter of semantics, but has safety and competition regulation implications for system operators. This paper proposes a structure to produce rail- and bus-based transit mode definitions and typology that are appropriate for modern use. A decision tree is used to classify and define the transit modes as guided-bus, trolley-bus, light rail and tram-train and is provided with example systems. The paper provides a robust definitional framework that allows transit system promoters, operators and other interested parties to have a consistent basis of reference when specifying and comparing rapid transit systems.  相似文献   

13.
Li  Jianling  Wachs  Martin 《Transportation》2004,31(1):43-67
In the United States, federal funding for public transit often accounts for a large proportion of a local agency's budget, especially for capital investments. For this reason, local governments can be expected to plan a portfolio of projects that maximize federal contributions. This study examines the financial effects of federal transit subsidy policy on local transit investment decisions. Data from a System Planning Study for the Geary Corridor in San Francisco are used as an illustration. It is found that federal transit subsidy policy provides financial incentives for local decision-makers to select capital-intensive investment options that may not be efficient or effective. While federal financial incentives are not the only factor influencing local investment decisions, some reform of the current subsidy policy may be necessary to reduce the incentive for ineffective use of public resources.  相似文献   

14.
In the past few years, numerous mobile applications have made it possible for public transit passengers to find routes and/or learn about the expected arrival time of their transit vehicles. Though these services are widely used, their impact on overall transit ridership remains unclear. The objective of this research is to assess the effect of real-time information provided via web-enabled and mobile devices on public transit ridership. An empirical evaluation is conducted for New York City, which is the setting of a natural experiment in which a real-time bus tracking system was gradually launched on a borough-by-borough basis beginning in 2011. Panel regression techniques are used to evaluate bus ridership over a three year period, while controlling for changes in transit service, fares, local socioeconomic conditions, weather, and other factors. A fixed effects model of average weekday unlinked bus trips per month reveals an increase of approximately 118 trips per route per weekday (median increase of 1.7% of weekday route-level ridership) attributable to providing real-time information. Further refinement of the fixed effects model suggests that this ridership increase may only be occurring on larger routes; specifically, the largest quartile of routes defined by revenue miles of service realized approximately 340 additional trips per route per weekday (median increase of 2.3% per route). Although the increase in weekday route-level ridership may appear modest, on aggregate these increases exert a substantial positive effect on farebox revenue. The implications of this research are critical to decision-makers at the country’s transit operators who face pressure to increase ridership under limited budgets, particularly as they seek to prioritize investments in infrastructure, service offerings, and new technologies.  相似文献   

15.
Abstract

There is a growing tendency in cities around the world to invest in Bus Rapid Transit (BRT) systems in an attempt to improve the capacity and quality of public transport services. The appeal of BRTs is based on their ability to combine the service level of rail transit systems with the flexibility of buses at relatively lower investment costs, and this was the motivation behind the opening of such a system in the Turkish city of Istanbul in 2007. This system has attracted mixed opinions as to its performance, as while passenger ridership figures are extremely high, proving the effectiveness of the system, there is an argument that the corridor should have been developed with rail technology, and that the BRT is failing to meet the demand. The paper presents a comprehensive analysis of this system, assessing its planning and performance through a comparative analysis of a number of BRTs in the world and Istanbul's metro and tram systems. The analysis confirms the success of the system in terms of passenger statistics, but also highlights a number of problems in certain planning decisions that should be addressed, thus taking the discussion beyond a simplified comparison of bus and rail technologies.  相似文献   

16.
Improved criteria are necessary to aid in determining awards of federal funds for metropolitan transit projects. Commuting is the main use for public transit. Thus a primary objective of an urban transit system should be to provide a flexible and balanced set of options to the workers in the metropolitan area for their journey to work. This paper discusses various facets of an appropriate balance among the three modes: rapid rail, bus, and automobile. Three cities are selected for further analysis: Baltimore, Kansas City, and Phoenix. These cities represent different stages in economic-transportation development, and also present different spatial patterns of residence and employment. The applicability of rapid rail transit to each city is examined in view of central city worker concentration and recent trends.  相似文献   

17.
This article documents the development of a direct travel demand model for bus and rail modes. In the model, the number of interzonal work trips is dependent on travel times and travel costs on each available mode, size and socioeconomic characteristics of the labor force, and the number of jobs. In estimating the models’ coefficients constraints are imposed to insure that the travel demand elasticities behave according to the economic theory of consumer behavior. The direct access time elasticities for both transit modes are estimated to be approximately minus two, and the direct linehaul time elasticities approximately minus one. The cross-elasticities with respect to the travel time components are estimated to be less than the corresponding direct elasticities. In general, the time cross-elasticities are such that rail trip characteristics but not car trip characteristics affect bus travel, and car trip characteristics but not bus trip characteristics affect rail travel. The cost elasticities lie between zero and one-half. Thus, the success of mass transit serving a strong downtown appears to depend on good access arrangements. This success can be confirmed with competitive linehaul speeds. The cost of travel appears to assume a minor role in choice of mode and tripmaking decisions. In the paper, a comparison is also made between the predictive performance of the models developed and that of a traditional transit model. The results indicate that the econometric models developed attain both lower percent error and lower variation of the error than the traditional model.  相似文献   

18.
轨道交通建设前期工作对工程造价的影响分析   总被引:1,自引:0,他引:1  
结合部分城市轨道交通前期工作的实际,介绍了轨道交通建设中线网规划、线路沿线土地利用规划的制定、客流预测以及线路敷设方式的确定等前期工作对地铁造价不同的影响方式和影响程度,提出了降低前期投资的几个方法和建议。  相似文献   

19.
This paper summarizes and updates the findings from an earlier study by the same authors of transit systems in Houston (all bus) and San Diego (bus and light rail). Both systems achieved unusually large increases in transit ridership during a period in which most transit systems in other metropolitan areas were experiencing large losses. Based on ridership models estimated using cross section and time series data, the paper quantifies the relative contributions of policy variables and factors beyond the control of transit operators on ridership growth. It is found that large ridership increases in both areas are caused principally by large service increases and fare reductions, as well as metropolitan employment and population growth. In addition, the paper provides careful estimates of total and operating costs per passenger boarding and per passenger mile for Houston's bus operator and San Diego's bus and light rail operators. These estimates suggest that the bus systems are more cost-effective than the light rail system on the basis of total costs. Finally, the paper carries out a series of policy simulations to analyze the effects of transit funding levels and metropolitan development patterns on transit ridership and farebox recovery ratio.  相似文献   

20.
Although researchers have long argued in favor of off-peak transit service, studies that have empirically estimated its benefits regarding revenue generation, trip diversions, and greenhouse gas (GHG) emission are rare. This study provides important evidence about the benefits of off-peak commuter rail service by focusing on the Pascack Valley line in New Jersey, where off-peak service was introduced in October 2007. The research involved two focus groups and an onboard survey of passengers. Benefits were estimated regarding additional revenue generation and reduction in vehicle miles traveled (VMT) and GHG emission. The research shows that the new off-peak service potentially reduced VMT by more than 12 million annually due to diversions from other modes. Although diversions from other modes resulted in a substantial reduction in GHG emissions, due to the additional diesel fuel used by the new trains, the net GHG savings were in the range of 28–49 %. The research further shows that both peak period and off-peak riders benefited from the new off-peak service. Evidence is found about an increase in new transit riders and a modest increase peak period usage because of the off-peak service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号