首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
分布式驱动电动汽车可以实现四轮转矩分配和差动转向,提升整车的动力学控制性能和经济性,但是四轮转矩独立可控的特点也对功能安全提出挑战。当前轮单侧电机出现执行器故障失效情况时,不仅会产生附加横摆力矩降低车辆安全性,差动转向功能的存在还会使车辆严重偏航。基于此,在设计分布式驱动-线控转向一体化底盘的基础上,基于功能安全提出一种分布式驱动电动汽车前轮失效补偿控制策略。首先建立分布式驱动失效动力学模型,分析前轮失效对车辆状态的影响机理,发现单一的驱动转矩截断控制无法满足车辆状态修正需求;其次设计一套备用的线控转向结构,通过变截距滑模控制算法提高切换状态下线控转向系统的转角跟踪性能,并用台架试验验证跟踪的准确性;然后设计自适应失效诊断观测器实时诊断驱动系统的电机故障,在将对应轮进行驱动转矩截断后,通过模型预测控制算法对车轮转矩重新分配实现纵向和侧向的状态跟踪;最后通过仿真和实车试验验证所提失效补偿控制策略的有效性和可用性。研究结果表明:分布式驱动电动汽车前轮单侧电机失效后,备用的线控转向系统能及时矫正前轮转角,所提出的失效补偿控制策略能够快速恢复车辆的稳定性和路径跟踪能力。  相似文献   

2.
针对分布式驱动车辆转向工况在低速下期望提高转向机动性能,高速下期望保证行驶稳定性的需求,充分考虑转向行驶内外侧车轮的转向关系以及车辆动力学,制定了适应车速变化的四轮转矩分配策略,建立了四轮轮毂电机驱动模型以及二自由度参考模型。为了改善分布式驱动转向机动性能,建立自抗扰控制器调整内外侧车轮转矩,形成合理的转速差,减小转向半径,以提高转向机动性;对于高速转向行驶稳定性的需求,通过二次规划方法优化分配各车轮驱动力矩,分析轮胎纵横向附着裕度建立目标函数,并加入附加横摆力矩和路面附着力的限制,进行车轮驱动转矩的在线优化分配,提高车辆转向行驶的稳定性;另外为避免2种控制模式转换时驱动转矩突变,根据车速和稳定性参数制定模糊规则决策2种模式的协调系数,保证2种控制模式的平滑过渡。基于CarSim和MATLAB/Simulink进行联合仿真,并搭建硬件在环平台进行试验,对所提出的方法进行验证。结果表明:在低速转向工况下,提出的分配策略能够调节内外侧车轮产生差速效果,与转矩平均分配的策略相比,转向半径有所减小,提高车辆机动性;高速转向工况下,分配策略能够保证车辆稳定转向,与未考虑稳定性控制的分配策略相比,能更好地跟踪目标轨迹,且横摆角速度控制在参考横摆角速度附近,证明了所提控制策略的有效性。  相似文献   

3.
对四轮独立驱动轮毂式电动汽车转向控制策略进行研究,建立了整车控制系统,提出了基于滑模变结构算法的转速转矩协调控制策略;基于Ackermann-Jeantand转向模型计算车辆转向所需的四轮差速,通过滑模控制器和转矩分配模块计算车辆稳定所需的四轮转矩,在车辆差速行驶的同时协调分配四轮的转矩。仿真结果表明,该控制方法简单有效,能提高电动汽车转向的稳定性和操纵性。  相似文献   

4.
为了满足高等级自动驾驶转向执行机构的高安全性需求,研究一种采用冗余双电机转向执行机构的线控转向系统,针对双电机在转角伺服控制过程中存在的不同步问题,提出一种基于滑模控制的同步控制策略。首先,对采用冗余双电机转向执行机构的线控转向系统进行结构原理的分析,建立线控系统转向执行机构模型和车辆二自由度模型;然后,为实现转向执行机构的转角伺服控制,在位置、速度、电流的三闭环控制策略的基础上设计速度同步控制器。为解决2个转向执行电机运行过程中存在的速度不同步问题,采用滑模控制方法,将2个电机的转速差值作为控制器的输入量,得到双电机电流的补偿量,并将其叠加至双电机的目标电流中。同时,将上述控制策略与传统PID控制进行对比仿真试验,验证了基于滑模同步控制的线控双电机执行器能够更好地协调双电机的转速,实现双电机同步运行。最后,搭建线控转向硬件在环试验台,对所设计的控制策略的有效性进行验证。结果表明:所设计的双电机线控转向系统滑模同步控制策略能够在实现转角伺服控制的同时,减少双电机的速度不同步现象,保证线控转向系统转角伺服的同步性能。  相似文献   

5.
首先建立了八轴分布式电驱动车辆动力学模型,提出了基于质心侧偏角的差动转向双层控制策略,上层控制器以质心侧偏角及其变化率和前轮转角为输入,采用模糊控制生成机械转向桥和差动转向桥的转向中心相对位置,从而获得后桥转向参考转向角;下层控制器以上层转向参考角为控制目标,采用增量式数字PI控制得到后桥电机的差动转矩。最后选取中高速工况,进行硬件在环仿真,验证了后桥差动转向控制效果和实时性。结果表明,与理想阿克曼转向策略相比,该策略能有效减小车辆转向过程中质心侧偏角,并保证了转向稳定性。  相似文献   

6.
轮毂电机驱动车辆各轮转矩精确可控且响应迅速的特点适用于越野工况,但越野路面起伏不一且附着条件多变,因此,开发基于越野工况辨识的车辆驱动力控制策略,对提升轮毂电机驱动车辆的纵向行驶稳定性具有重要意义。基于动力学模型分析路面附着与路面几何特征,确定可用于越野工况辨识的车辆特征参数集;针对车轮悬空垂向载荷估计失真现象,且由于地面垂向力的实际变化导致车辆垂向载荷分配比例的改变,修正了垂向载荷的计算;利用各特征参数的差异与越野工况的映射关系判定工况属性,采用模糊识别法界定4种地形工况;驱动力控制上层考虑工况与驾驶员影响因素,通过越野工况辨识结果决策驱动利用系数,作为前馈期望转矩调节权重;中层通过四轮垂向载荷得到转矩分配系数,设计驱动力分配算法;下层针对车辆在越野工况下出现车轮滑转与悬空状态,对车轮进行动态转矩补偿。仿真测试与实车验证表明,越野工况辨识结果与预期相符,驱动力控制策略综合优化了车辆稳定性和动力性。  相似文献   

7.
为解决后轮双电机驱动电动汽车的动态非线性转矩分配问题,提出一种预测并优化输出的分配策略。基于车辆动力学计算转矩输出,使用粒子群优化(PSO)算法及路面检测系统修正输出转矩,以某型后驱双轮毂电机样车为基础,设计优化分配算法,通过CarSim搭建整车联合仿真模型验证算法的性能,并以整车控制器为基础对设计的算法进行硬件在环测试。测试结果表明,提出的动态转矩分配策略可以根据实际工况分配驱动轮的转矩,降低驱动轮滑转率,提高整车的驾驶性能。  相似文献   

8.
为实现商用车线控转向,设计一套新的线控转向系统架构及其转角跟踪控制算法。新的线控转向系统采用丝杠螺母结构中的丝杠直接控制纵拉杆,螺母通过带轮机构被电机驱动。对线控转向系统结构进行运动学分析,推导转向系统可变传动比,采用前轮转角为状态变量,建立线控转向系统二阶动力学模型。基于转角跟踪目标,采用反步控制算法,设计线控转向系统转角跟踪控制器,通过反馈系统线性化处理系统参数不确定和环境干扰问题,实现准确的目标转角跟踪,并建立李雅普诺夫函数,证明了采用反步控制的线控转向系统是渐进稳定的。搭建采用“丝杠螺母+带轮机构”架构的线控转向实车底盘测试台架,选取蛇形和混合工况进行控制算法验证。研究结果表明:与滑模控制算法的测试结果对比可知,反步控制算法绝对平均跟踪误差值降低了71.88%~79.57%,跟踪误差标准偏差值降低了71.32%~78.50%;线控转向系统反步控制转角跟踪算法能够减少系统收敛到原点的时间,抑制系统的抖振,提高车辆线控转向系统转角跟踪的操纵灵活性。  相似文献   

9.
线控转向系统取消了转向盘和转向轮的机械连接,由控制算法折算转向电机驱动转矩并通过电控实现传动比的改变。针对实际转向过程中存在的转向过度或转向不足等问题,本文中在动态输出反馈控制框架下,根据车辆运动学和动力学理论,结合车辆2自由度模型提出了基于行驶场景模型的角传动比动态协调控制机制,建立了线控辅助转向系统的转角控制算法。最终通过转向过程中的速度、加速度、横摆角速度和轨迹的仿真,并与其它转向控制算法和机械转向进行对比,验证了系统对转向过程主动调控和施加补偿或修正控制的有效性与实时性。  相似文献   

10.
基于控制分配的四轮独立电驱动车辆驱动力分配算法   总被引:3,自引:0,他引:3  
针对目前四轮独立电驱动车辆研究中尚未有效解决的系统失效控制问题,提出了一种基于控制分配的驱动力分配算法.首先建立了满足车辆经济性要求的目标函数和相关约束条件,通过优化保证在正常驱动状态下整车具有最佳的经济性能.接着基于控制分配原理对故障电机驱动转矩进行约束处理,使目标转矩能够在多种失效情况下实现再分配,有效解决了多驱动电机系统失效控制问题.最后,仿真结果验证了所提出的算法能在安全约束下有效地改善车辆的经济性,并系统地提升了车辆应对故障的能力.  相似文献   

11.
提出了一种集成直接横摆力矩控制(DYC)与驱动防滑控制(ASR)的四轮驱动电动汽车稳定性控制系统,协助驾驶员在紧急情况下保持对车辆的控制。采用变论域模糊控制策略,利用其内在固有的鲁棒性克服车辆严重非线性,独立调节四轮转矩以防止车辆甩尾;同时设计一个模糊控制器,对轮胎力饱和引起的侧向失稳进行开环补偿,协调控制各轮牵引力,防止车轮打滑。在不同路况下,对所提出的方法进行了J-turn仿真测试。结果表明:集成控制对高速、大转向行驶产生的扰动和路面附着系数变化引起的非线性,有比DYC更好的动态跟踪能力与自适应能力。  相似文献   

12.
提出了一种集成直接横摆力矩控制(DYC)与驱动防滑控制(ASR)的四轮驱动电动汽车稳定性控制系统,协助驾驶员在紧急情况下保持对车辆的控制。采用变论域模糊控制策略,利用其内在固有的鲁棒性克服车辆严重非线性,独立调节四轮转矩以防止车辆甩尾;同时设计一个模糊控制器,对轮胎力饱和引起的侧向失稳进行开环补偿,协调控制各轮牵引力,防止车轮打滑。在不同路况下,对所提出的方法进行了J-turn仿真测试。结果表明:集成控制对高速、大转向行驶产生的扰动和路面附着系数变化引起的非线性,有比DYC更好的动态跟踪能力与自适应能力。  相似文献   

13.
基于对四轮独立驱动汽车进行的动力学分析,提出通过调节驱动电机的电流来控制各轮纵向力以提高车辆操纵稳定性的策略.建立了驱动系统的动态响应模型,并将其变换为驱动系统控制模型.提出整车控制方案和控制器参考输入的调整方法,并运用最优控制理论设计了驱动系统反馈控制器.最后采用等转矩和等功率驱动力分配策略进行实验,结果表明该方法能取得较好的控制效果.  相似文献   

14.
为了提高多轮分布式电驱动车辆在复杂机动环境下的转向能力,设计了一种基于直接横摆力矩控制的双重转向系统。该控制系统采用分层结构,上层为横摆力矩决策层,下层为驱动力分配层。在控制系统上层,基于无迹卡尔曼滤波和递归最小二乘结合算法进行路面辨识;根据车辆状态信息和路面条件自适应调节滑移转向比,由车辆动力学模型和滑移转向比确定双重转向参考模型;针对滑模面附近非连续特性造成的控制信号抖动现象,将滑模控制算法进行改进,设计了滑模条件积分控制器,使车辆实际横摆角速度追踪双重转向参考模型计算出期望横摆角速度。系统下层在保证车辆总驱动力的前提下,基于控制分配规则将上层广义目标控制力需求分配至各执行器。最后,利用硬件在环实时仿真平台进行控制策略验证。结果表明,分层控制系统较好地实现了路面识别功能和车辆双重转向功能,针对不同路面工况对车辆进行了有效地行驶控制,减小了车辆在狭小弯曲地区的转弯半径,抑制了车辆状态参数及电机转矩的颤振和抖动,改善了车辆小半径行驶的转向机动性和高速行驶稳定性。  相似文献   

15.
针对四轮轮毂电机独立驱动、四轮线控转向电动汽车的过驱动系统,以提高汽车的操纵稳定性为目标,提出了一种基于伪逆控制分配的控制算法。该算法以驾驶员对转向盘和加速踏板的操纵量为输入,通过伪逆控制分配,对汽车的前、后轮转角,4个车轮的驱动力进行控制。在Matlab/Simulink仿真环境下采用8自由度非线性车辆模型对所提出的算法,进行了正弦输入工况和双移线工况的仿真,并与采用常规控制方法时进行对比。结果表明,伪逆控制分配算法提高了汽车对驾驶员驾驶意图的跟随性能,并改善了汽车的稳定性。  相似文献   

16.
徐兴  汤赵  王峰  陈龙 《中国公路学报》2019,32(12):36-45
为了提高分布式无人车轨迹跟踪的精度,提出了基于自主与差动协调转向控制的轨迹跟踪方法。首先,在车辆三自由度模型基础上,基于模型预测控制(MPC)实时计算前轮转角以控制车辆进行自主转向轨迹跟踪。在此过程中,为了提高自主转向下车辆的轨迹跟踪精度与行驶的稳定性,考虑多种因素,利用经验公式及神经网络控制对MPC的预瞄步数和预瞄步长进行多参数调整,实现预瞄时间的自适应控制。其次,在恒转矩需求的情况下,以轨迹偏差为PID控制器的输入及左右轮毂电机转矩为输出进行差动转向控制,实现了差动转向下的轨迹跟踪控制。然后,通过设置权重系数的方法将自主与差动转向相结合。考虑到车辆横纵向动力学因素,采用模糊控制及经验公式对权重系数进行了调整,从而在提高车辆转向灵活性与轨迹跟踪效果的同时保证车辆行驶的稳定性。CarSim与Simulink联合仿真以及实车试验结果表明:与自主转向轨迹跟踪相比,采用变权重系数的协调控制可以在不同的工况下提高车辆的转向灵活性与轨迹跟踪的精度,轨迹跟踪偏差的均方根值改善率达到了11%。所提出的协调转向控制方法可为分布式驱动车辆转向灵活性的提高及轨迹跟踪精度的改善提供一种新的思路。  相似文献   

17.
为提升分布式驱动车辆在转弯过程中的动力性和稳定性,对电子差速控制系统进行了研究。提出了插电式混合动力客车轮毂电机目标转矩的二次分配策略:以两侧车轮垂直载荷比为转矩分配标准的第1次目标转矩分配和以车轮滑动率进行转矩修正的第2次目标转矩分配。经试验验证,该控制策略能够很好地实现电子差速控制,且在电机转矩控制和车辆滑动率控制上具有较高的控制精度。  相似文献   

18.
针对装有轮毂电机的分布式驱动车辆,设计了一种车辆稳定性控制系统,该系统包括上层附加横摆力矩决策和下层转矩分配2个层次.基于滑模控制理论设计了上层β-ω联合控制器,并用修正的五参数菱形法划分车辆相平面的稳定域,基于此设计稳定度指标进行失稳判断与控制比例分配,下层基于动态载荷理论分配附加横摆力矩,优化了控制分配效果,在MA...  相似文献   

19.
以某小型乘用车为研究对象,为提高线控制动车辆的转向稳定性,通过扩展卡尔曼滤波进行质心侧偏角的估计,以质心侧偏角和横摆角速度为控制变量,设计模糊滑模联合控制器得到附加横摆力矩,以单轮差动制动方式施加到被控车轮上。利用CarSim与Simulink联合仿真平台,基于IEHB系统及控制系统的集成模型在双移线工况下进行了仿真实验。结果表明所设计的IEHB系统压力控制器能够较好地实现压力跟踪,并能验证所提出的车辆稳定性控制策略的有效性与合理性。  相似文献   

20.
针对分布式驱动车辆系统非线性的特性,提出一种基于最优转矩矢量控制的车辆侧向稳定性控制系统。首先使用魔术公式轮胎模型实时估计轮胎力,搭建轮胎侧偏刚度变化的非线性车辆模型。接着借鉴近似线性二次型规划的最优控制思想,设计基于质心侧向加速度的增益可调的横摆转矩控制方法,并根据驱动电机峰值转矩和轮胎摩擦圆的约束条件进行转矩矢量分配。最后进行Car Sim和Lab VIEW联合仿真和硬件在环实验。结果表明,控制系统能对车辆进行有效的实时控制,在显著改善车辆稳定性的同时不严重影响车辆的纵向性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号