首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The slamming behaviour of a large high-speed catamaran has been investigated through the analysis of full-scale trials data. The US Navy conducted the trials in the North Sea and North Atlantic region on a 98 m wave piercer catamaran, HSV-2 Swift, designed by Revolution Design Pty Ltd and built by Incat Tasmania. For varying wave headings, vessel speeds and sea states the data records were interrogated to identify slam events. An automatic slam identification algorithm was developed, considering the measured rate of change of stress in the ship’s structure coupled with the vessel’s pitch motion. This has allowed the slam occurrence rates to be found for a range of conditions and the influence of vessel speed, wave environment and heading to be determined. The slam events have been further characterised by assessing the relative vertical velocity at impact between the vessel and the wave. Since the ship was equipped with a ride control system, its influence on the slam occurrence rates has also been assessed.  相似文献   

2.
Catamaran vessels operating at high-speed can be exposed to deck diving and bow damage and one resolution of this problem is the wave-piercer design of INCAT Tasmania. Owing to the complexity of the unsteady non-linear flow in the bow area during large wave encounter model testing has been undertaken to identify the peak dynamic slam loads on the ship structure. This paper provides experimental benchmark information relating to the wave slam loads on wave-piercing catamaran ferries. Since the time frames of transient slam loadings and whipping vibration of the entire hull in its first bending mode are similar it is important that the test model replicates the whipping response and therefore needs to be a hydro-elastic model. A 2.5 m hydro-elastic segmented catamaran model has been developed based on the 112 m INCAT Tasmania wave-piercer catamaran to establish the peak wave slamming loads acting on the full-scale vessel. Towing tank tests were performed in regular seas at a maximum full-scale operating speed of 38 knots. The model was instrumented to measure the dynamic slam loads acting on the centre bow and vertical bending moments acting in the demihulls of the catamaran model as a function of wave frequency and wave height. Peak slam loads measured on the centre bow were found to approach the total weight of the model, this being a broadly similar result to the peak loads measured at full-scale. It was found that global dimensionless heave and pitch accelerations peaked in the same range of encounter frequency as did the peak slam load.  相似文献   

3.
本文就日本S-175集装箱船舶的波浪载荷进行了船模试验与线性切片理论计算的比较,发现线性切片理论对于波浪载荷沿船长的纵向分布以及中拱与中垂的不同分量都与试验值存在着相当大的差异,仅纵向运动较为满意;揭示了对于在高浪级下快速舰船的波浪载荷,特别是砰击载荷应致力于开展非线性理论和试验研究。  相似文献   

4.
The present study focuses on the nonlinear behavior of pressure on the hull surface of a high-speed vessel in irregular waves, particularly the pressure responses of alternately wet and dry areas near the waterline and on the bow zone. The vessel has high deadrise angles that may be subject to slight impact and water pile-up effects. A series of experiments in regular and irregular head waves were conducted, and the validity of applying Volterra modeling was investigated. In a previous article using experimental data in regular waves, it was confirmed that the approximate third-order Volterra model adequately simulated the variation of pressure responses in regular waves of different steepness up to a wave amplitude with a wavelength ratio of 0.01, even for the highly nonlinear pressures acting on the abovementioned areas of the hull surface. In this article, further validation for the second part of the study was obtained using experimental data in irregular waves. The frequency response functions obtained from the previous study’s experimental data in regular waves were applied to the third-order Volterra model by combining the input of irregular waves to simulate the responses in irregular waves of sea state five. Then, the spectra and statistics were analyzed. For the motions, accelerations, and pressure responses in irregular waves (as well as for the simulated time histories) variance spectra and statistics such as cumulative distributions of peak values and probability density functions were compared with the experimental results. It was confirmed that even for highly nonlinear and non-Gaussian pressures on the abovementioned areas of the hull surface, the approximate third-order Volterra model simulates the pressure responses in irregular head waves up to a sea state of five with adequate accuracy on deterministic and statistical bases.  相似文献   

5.
Civil infrastructure systems such as bridge piers, navigational guide walls, and protection structures that are located near navigable waterways are inherently at risk for being impacted by cargo vessels such as barges and ships. To safely design such systems to possess adequate vessel impact resistance, structural loads associated with potential vessel-structure collision conditions must be quantified in a conservative manner. While high-resolution finite element impact simulations may be employed to compute such loads, care must be exercised in defining the material characteristics of the vessel if conservative structural design loads are to be obtained. Importantly, constitutive relationships assigned to steel components in the vessel model must be capable of accounting for strain rate sensitivities and large-scale plastic deformations.In the present study, strain rate sensitive constitutive models were developed for two types of steel commonly utilized in marine construction in the United States—ASTM A36 and ASTM A1011. Tension tests were conducted over a wide range of strain rates (7.00 × 10−5 s−1 – 250 s−1) spanning from quasi-static to intermediate and high rates that are typically associated with vessel-structure impact events. A novel testing apparatus—employing an impact pendulum as an energy supply mechanism—was designed for this study to conduct intermediate to high-rate material testing. Features of the apparatus, discussed in this paper, overcome key problems encountered in other studies that have employed impact loading for tensile material testing. From the testing program, representative stress–strain relations and Cowper–Symonds strain rate sensitivity parameters were developed for the materials tested. Rate sensitivities of the two steel grades tested were found to be very similar to each other. Additionally, rate sensitivities from the present study agreed well with ultimate stress data measured in past studies of mild steel, but were found to be less rate-sensitive than yield stress data measured in past studies.  相似文献   

6.
URANS simulations of catamaran interference in shallow water   总被引:1,自引:0,他引:1  
This paper investigates the interference effects of wave systems on a multi-hull vessel in shallow water. A numerical analysis is made using the URANS code CFDSHIP-Iowa V.4 on the DELFT Catamaran model 372. The test matrix for numerical computations includes two separation distances (s = 0.17; 0.23) and the depth values of h/T = 8.2, 2.5 and 2, at several speeds ranging within Fr H = 0.775–1.739. Numerical results are compared with the experimental data of the Bulgarian Ship Hydrodynamic Center, and verification and validation for resistance, sinkage and trim are also performed. Results show that, at critical speed (Fr H ≈ 1), the presence of a finite depth significantly affects the catamaran total resistance, which, in shallower water, increases considerably with respect to deep water. At low h/T, small effects of the water depth on resistance occur at subcritical and supercritical speeds. The interference effects seem to be more relevant in shallow, rather than in deep water, with maximum IF values registered at critical speeds (Fr H ≈ 1). Similarly to deep water, the lower the separation distance the greater the interference value. Moreover, in shallow water some negative interference is observed at Fr > 0.5. Wave patterns and wave profiles are analyzed and a comparison is made between several configurations of catamaran and a mono-hull vessel, in order to analyze how water depth and separation distance determine resistance and interference. Finally, a vortex instability study is also included.  相似文献   

7.
The coefficient of contribution method, in which the extreme response is determined by considering only the few most important sea states, is an efficient way to do nonlinear long-term load analyses. To furthermore efficiently find the nonlinear short-term probability distributions of the vessel responses in these sea states, response conditioned wave methods can be used. Several researchers have studied the accuracy of response conditioned wave methods for this purpose. However, further investigations are necessary before these can become established tools. In this paper we investigate the accuracy by comparing the short-term probability distributions obtained from random irregular waves with those from response conditioned waves. We furthermore show how response conditioned wave methods can be fitted into a long-term response analysis. The numerical and experimental investigations were performed using a container vessel with a length between perpendiculars of 281 m. Numerical simulations were done with a nonlinear hydroelastic time domain code. Experiments were carried out with a flexible model of the vessel in the towing tank at the Marine Technology Centre in Trondheim. The focus was on the probability distributions of the midship vertical hogging bending moments in the sea states contributing most to the hogging moments with a mean return period of 20 years and 10 000 years. We found that the response conditioned wave methods can very efficiently be used to accurately determine the nonlinear short-term probability distributions for rigid hulls, but either accuracy or efficiency is to a large effect lost for flexible hulls, when slamming induced whipping responses are accounted for.  相似文献   

8.
Mathematical model of single-propeller twin-rudder ship   总被引:1,自引:1,他引:0  
A mathematical model of a single-propeller twin-rudder ship has been developed from captive and free running model experiments. An open water rudder experiment was carried out to figure out the characteristics of the rudder. Captive experiments in a towing tank were carried out to figure out the performance of a single-propeller twin-rudder system on a large vessel. Interactions between the hull, propeller and twin rudders, including mutual interactions between the twin rudders, were expressed with several coefficients that were calculated from the experimental results at various ship speeds. In the analysis, the unique characteristics of a single-propeller twin-rudder ship, which affects rudder forces, were explained and formulated in the mathematical model. The captive model tests were conducted with zero ship’s yaw rate, so the interaction coefficients, which are influenced by the yaw rate, are determined from free running model experiments. Validation of the mathematical model of a single-propeller twin-rudder system for a blunt body ship is carried out with an independent set of free running experiments, which were not used for determining the interaction coefficients. The validated numerical model is used for carrying out simulations. Based on simulation results, some recommendations have been proposed for installing a single-propeller twin-rudder system.  相似文献   

9.
10.
以叠船运输方式下的半潜船为研究对象,采用CATIA软件进行三维建模。基于AQWA软件计算在规则波中不同浪向、不同航速和不同吃水下的响应幅值算子(Response Amplitude Operator, RAO),分析在不规则波中不同海况条件下货物绑扎设计关键点的加速度变化,发现浪向、航速和吃水等因素对RAO的影响规律。研究结果可为叠船运输方式下的半潜船安全运输提供运动预报,为货物绑扎设计提供依据。  相似文献   

11.
An efficient method for calculation of the slamming pressures on ship hulls in irregular waves is presented and validated for a 290-m cruise ship. Nonlinear strip theory was used to calculate the ship–wave relative motions. The relative vertical and roll velocities for a slamming event were input to the slamming calculation program, which used a two-dimensional boundary element method (BEM) based on the generalized 2D Wagner formulation presented by Zhao et al. To improve the calculation efficiency, the method was divided into two separate steps. In the first step, the velocity potentials were calculated for unit relative velocities between the section and the water. In the next step, these precalculated velocity potentials were used together with the real relative velocities experienced in a seaway to calculate the slamming pressure and total slamming force on the section. This saved considerable computer time for slamming calculations in irregular waves, without significant loss of accuracy. The calculated slamming pressures on the bow flare of the cruise ship agreed quite well with the measured values, at least for time windows in which the calculated and experimental ship motions agreed well. A simplified method for calculation of the instantaneous peak pressure on each ship section in irregular waves is also presented. The method was used to identify slamming events to be analyzed with the more refined 2D BEM method, but comparisons with measured values indicate that the method may also be used for a quick quantitative assessment of the maximum slamming pressures.  相似文献   

12.
A simulation model of a very large crude carrier (VLCC) with either a mariner type Schilling rudder or a mariner rudder was developed from captive and free-running model tests. Kijima’s regression formula was used to predict the hydrodynamic hull forces on the VLCC. To simulate full-scale maneuvering at cruising speed, the constant torque operation of the main engine was assumed. Considering the higher normal lift force and maneuverability of the mariner type Schilling rudder as compared to the mariner rudder, the size of mariner type Schilling rudder is kept smaller as compared to mariner rudder. To compare the efficiency of the two types of rudder system, maneuvering simulations at constant engine torque and course-keeping simulations at various gusting wind speeds and encounter angles were carried out. Based on the simulation results, the two rudder types were compared from the viewpoint of maneuvering and fuel efficiency in windy conditions.  相似文献   

13.
This study investigates the resistance of a transport ship navigating in Arctic waters by conducting a series of model tests in an ice tank at Tianjin University. The laboratory-scale model ship was mounted on a rigid carriage using a one-directional load cell and then towed through an ice sheet at different speeds. We observed the ice-breaking process at different parts of the ship and motion of the ice floes and measured the resistances under different speeds to determine the relationship between the ice-breaking process and the ice resistance. The bending failure at the shoulder area was found to cause maximum resistance. Furthermore, we introduced the analytical method of Lindqvist (1989) for estimating ice resistance and then compared these calculated results with those from our model tests. The results indicate that the calculated total resistances are higher than those we determined in the model tests.  相似文献   

14.
This study investigates the resistance of a transport ship navigating in level ice by conducting a series of model tests in an ice tank at Tianjin University. The laboratory-scale model ship was mounted on a rigid carriage using a one-directional load cell and then towed through an ice sheet at different speeds. We observed the ice-breaking process at different parts of the ship and motion of the ice floes and measured the resistances under different speeds to determine the relationship between the ice-breaking process and ice resistance. The bending failure at the shoulder area was found to cause maximum resistance. Furthermore, we introduced the analytical method of Lindqvist(1989) for estimating ice resistance and then compared these calculated results with those from our model tests. The results indicate that the calculated total resistances are higher than those we determined in the model tests.  相似文献   

15.
采用STF理论和Frank源分布-紧密拟合法对国外核潜艇潜望状态进行了纵荡、垂荡、纵摇、横荡、横摇、艏摇和垂向加速度等波频运动耐波性理论预报.给出了不同航速、航向时的规则波运动响应和不同航速、航向、波高、波浪平均周期时的不规则波运动统计值.对典型艇型进行变化稳心高、纵向和横向惯性系数计算.最后对各艇进行了耐波性能比较.  相似文献   

16.
超大型船舶栈桥码头安全系泊技术试验研究   总被引:1,自引:0,他引:1  
系泊安全问题,随着超大型船舶运输和开敞式深水泊位的出现日益显得重要。这类事故不但造成船舶的重大损失,还直接威胁港口的安全。本文以模型试验为基础,对影响系泊安全的各相关因素进行了定量测试,获得了大量数据,再根据实地潮流资料,对中国远洋运输公司“普安海”轮系泊北仑港和宝钢主原料码头时所受的流压力的数值范围进行了估算。最后本文列出系泊安全的技术措施,为船舶安全生产和码头泊位设计提供了参考依据。  相似文献   

17.
海上风电场维护船船型总阻力和纵摇升沉运动研究   总被引:1,自引:0,他引:1  
根据海上风电场维护船的使用和性能要求,分析小型单体船、双体船、多体船对于海上风电场的实用性,最终确定采用双体船型为风电维护船船型。结合小水线面双体船和穿浪双体船的船型优点,对风电维护船片体进行改进,得到常规型和改进型双体风电维护船型方案。采用CFD仿真技术,利用常规双体船型探索双体船阻力CFD仿真方法,对改进船型进行阻力仿真计算。采用船舶设计软件NAPA的耐波性模块计算分析两种船型的纵摇和升沉性能,得到了维护船不同速度和浪向角时两船型的纵摇和升沉响应曲线。  相似文献   

18.
基于势流理论和格林函数,探索五体船在不规则波中运动的波浪载荷响应函数,并且运用波谱分析法,采用北大西洋波浪散布图,对船体的几个典型剖面作波浪载荷的长期预报。分析不同航速、不同浪向角下典型剖面上的弯矩和剪力,研究五体船在波浪中运动时剖面载荷的分布规律。  相似文献   

19.
Vertical bending moment (VBM) is of crucial importance in ensuring the survival of vessels in rough seas. With regard to conventional vessels, wave-induced maximum VBM is normally considered to be experienced in head seas. It is conservative to determine the extreme VBM based on either numerical simulations or model tests in long-crested head seas. Extensive model tests have been conducted in head seas with focus on the nonlinear vertical responses in severe seas, and the measured results were compared with numerical calculations for validation. Unexpected phenomena, however, were observed during the model tests of an ultra-large containership. The maximum sagging and hogging VBMs were encountered in oblique seas. Furthermore, the significant wave height used in oblique seas was even smaller than that used in head seas. The nonlinear vertical load effects in oblique seas require further investigations for this particular vessel. Limited experimental results in oblique seas have been reported, in which the lateral responses were always more concerned than the vertical responses. Up to now, rare systematic comparisons of the nonlinear vertical responses between head and oblique seas have been published, especially when the hydroelastic effects are also accounted for. A 13000-TEU ultra-large containership model, which was designed by Hyundai Heavy Industries (HHI), has been tested in the towing tank and the ocean basin at the Marintek center in Trondheim. The experimental results in regular waves are first compared between head and oblique seas. The statistical characteristics of the VBM amidships under nineteen irregular wave conditions are then investigated. Next, the extreme hogging and sagging VBMs are compared under different wave conditions with focus on the extreme hogging VBMs. At the end of the paper, the uncertainties in the experiments are discussed.  相似文献   

20.
The fatigue strength of a 300 mm2 stranded copper conductor was investigated experimentally and by finite element (FE) analysis. An analytical model was also developed and validated. Wires taken from the outer layer of the conductor were fatigue tested in tension–tension loading and compared with similar data for wires taken from a 95 mm2 conductor. The wire cross section was deformed due to the compacting process that was applied during fabrication. When corrected for stress concentrations due to the deformation the data for the two sets of wire fell within the same scatter-band. Full scale testing was carried out in a specially designed rig with constant tensile load and reversed displacement controlled bending with a fixed curvature variation. The loading is a simulation of the loading of a power cable hanging from a floating vessel through a bellmouth. Conductors were tested in two states; dry and lubricated. A finite element model was established for the copper conductor. The model was formulated by a combination of elastic beam and beam-contact elements that included the effects of friction. The effect of local bending due to contact forces was included in the model. Two contact conditions were investigated; the point (trellis) contact between adjacent layers of wire and the inline contact within each layer and between the first layer (centre wire) and the second layer. The FE model was validated by a calibration test of a full scale conductor, and by sensitivity studies varying the size and the number of elements of the model. Fatigue analysis of the conductor was carried out, based on the S–N curve for individual wires. Taking into account the effects of friction and local bending, agreement was obtained between predicted and experimental fatigue strength of the conductor, for the FE model as well as the analytical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号