首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
吴俊杰  潘攀  胡小弟  付雄峥 《公路工程》2023,(6):147-152+178
针对级配碎石基层承载能力不足问题,研究不同微生物矿化试验方法对级配碎石强度的提升效果。试验研究了微生物矿化反应溶液的配置参数,对比分析了不同固结方法的效果及其优劣性。结果表明,当胶结液中的尿素浓度、氯化钙浓度分别为1、2 mol/L,且菌液体积与胶结液体积比为1∶3时,矿化反应效果最好;对于直接拌和法,级配碎石的强度随养护时间的延长而提高,且干法养护方式效果更优;对于预制泥浆法时,试件的强度随碳酸钙泥浆掺量的增加而增大;对于表面渗透法,在单次渗透用水量为最佳含水率两倍时效果最好,多次渗透及过量渗透溶液均会降低试件强度。3种微生物矿化试验方法中,表面渗透法的固化效果最佳,直接拌和法与预制1%泥浆法提升效果相近。  相似文献   

2.
王云  张晶  何斌  郭彪 《路基工程》2017,(3):125-128
针对机制砂与生石灰两种改良红黏土,开展了不同掺量及不同干湿循环次数下改良红黏土填料的回弹模量试验。结果得出:改良红黏土的回弹模量随生石灰和机制砂掺量的增加均呈线性递增关系,生石灰改良红黏土回弹模量的增长速率明显大于机制砂改良红黏土;随着干湿循环次数增加,素红黏土和机制砂改良红黏土的回弹模量值呈对数函数衰减,而生石灰改良红黏土的回弹模量则呈现不降反升的趋势,表明机制砂对红黏土填料长期水稳定性的改善效果不明显,生石灰的改良作用显著。  相似文献   

3.
为了探究废旧轮胎橡胶颗粒与红黏土混合土作为路基填料的可行性,选择不同粒径(10目、20目、60目)不同含量的橡胶粉(0%、2%、4%、6%、8%和10%)掺入红黏土中,通过室内试验研究混合土的液塑限、击实特性、膨胀率和CBR值变化关系,探讨橡胶红黏土的路用性能和机理。结果表明:混合土液限和塑性指数随橡胶粉掺量的增大而降低,但仍大于50%和26,不能直接用作路基填料。最优含水率和最大干密度随橡胶粉掺量的增大而减小,呈一元二次函数关系,且三者间呈二元二次函数关系。膨胀率随橡胶粉掺量的增大而减小,橡胶目数越大,土体膨胀量越小。橡胶红黏土CBR随橡胶粉掺量的增大总体上减小,基本呈一元三次函数关系。红黏土中掺入橡胶粉,改良效果不佳,但可抑制土体的膨胀量。  相似文献   

4.
针对影响碱液处理红黏土强度的主要因素,采用正交设计方法进行无侧限抗压强度试验,通过极差分析和方差分析相结合的方法研究含水率、碱液浓度、养护温度等因素对无侧限抗压强度的影响规律。结果表明:碱液处理后,红黏土的无侧限抗压强度提高显著,影响碱液处理红黏土无侧限抗压强度的主次因素依次为:碱液浓度、含水率、养护温度,最优水平组合为:含水率20%、碱液浓度2.0 mol/L、养护温度100℃。  相似文献   

5.
以贵州红黏土为研究对象,通过干土法和湿土法备样并进行试验,研究备样方法对红黏土的液塑限、击实与加州承载比指标的影响;结合SEM扫描电镜试验,基于温度变化对结合水和胶结物质的影响,分析了备样方法对路用指标的影响机理。结果表明:湿土法的液限与塑限分别高于干土法3.0 %~6.0 %与1.0 %~6.0 %,最佳含水率高于干土法2.0 %~3.0 %,最大干密度低于干土法0.03 ~0.08 g/cm3,CBR值高于干土法0.6 %~1.1 %,其差值约为湿土法的12.0 %~25.0 %。干土法烘干导致弱结合水丧失和胶结物质凝胶特性失效,是备样方法对其路用性能影响的根本原因。红黏土的路用指标适宜采用湿土法,可拓宽红黏土的应用范围。  相似文献   

6.
《公路》2020,(8)
为促进红黏土分布地区道路建设,进一步解决二灰稳定红黏土存在的脆性破坏和收缩开裂等问题,研究采用掺入0.15%、0.30%、0.45%、0.60%的聚丙烯纤维加固二灰稳定红黏土,并通过击实试验、无侧限抗压强度试验、抗弯拉强度试验、温缩特性试验以及干缩特性试验,分析聚丙烯纤维加固二灰稳定红黏土的力学与收缩性能与养护龄期和纤维掺量的关系。试验结果表明:虽然聚丙烯纤维对二灰稳定红黏土早期的抗压强度、抗弯拉强度以及温缩和干缩系数的改善效果并不明显,但随着养护龄期的增加,聚丙烯纤维加固二灰稳定红黏土的后期抗压强度和抗弯拉强度得到较大提高,破坏韧性得到提升,温缩系数和干缩系数与未掺加聚丙烯纤维的材料相比显著减小。综合考虑试验结果及经济性,在二灰稳定红黏土中掺加0.45%的聚丙烯纤维能够有效改善二灰稳定红黏土的土体强度,提升抗变形能力,抑制收缩开裂,使其满足公路基层的技术要求。  相似文献   

7.
高液限红黏土广泛的分布于非洲热带雨林气候区,由于其材料特性,一般不能直接填筑路基,需要对土体进行掺拌改良等工艺处理后方可用于路基填筑。然而综合考虑非洲地区公路基建行业的对工期以及成本的要求,需要直接用高液限红黏土进行路基填筑,雅杜高速项目所处环境为典型的非洲热带雨林气候区,项目通过对红黏土的施工工艺进行改进,总结出一套高液限红黏土在非洲热带雨林气候区进行路基填筑的施工工艺。  相似文献   

8.
喀麦隆雅杜高速项目位于非洲中西部地区,属于热带雨林气候,高速沿线土质主要为高液限红黏土。受到雅杜高速项目投资的控制,对高液限红黏土的改良处理难以实现。本文通过土工试验研究高液限红黏土物理性质和路用性能特征,探讨高液限红黏土直接用于路基填筑的可行性,不仅可以解决雅杜高速路基填料的使用问题,还可以为非洲其他地区高液限红黏土工程应用提供参考。结果表明,雅杜高速沿线高液限红黏土试样的天然含水率在33. 4%左右,液限较高达60%,颗粒成分中以小于0. 075mm的细颗粒为主,红黏土中的含量较多的游离氧化铁及其胶结集合体是造成高液限、天然含水率、高强度和压实性较差的主要原因;现场采样红黏土虽然CBR值较高,属于中压缩性土,但其天然含水量和最佳含水量相差10%以上,是导致现场施工压实困难的主要原因。  相似文献   

9.
为改良上海地区黏土强度低的工程特性,采用在黏土中添加黄原胶和黄麻纤维的方法,通过无侧限抗压试验,来探究黄原胶含量、黄麻纤维加筋率以及养护龄期对上海黏土无侧限抗压强度特性的影响。试验结果表明:黏土中加入黄原胶和黄麻纤维都能够提高其无侧限抗压强度;随着黄原胶掺量的增大,黏土的抗压强度先增大后减小,过量的黄原胶可能会导致黏土强度降低;随着黄麻纤维加筋率的提高,黏土的抗压强度随之增大,过量地加入黄麻纤维可能会在一定程度上削弱黄麻纤维加筋黏土的效果;当在黏土中同时加入黄原胶和黄麻纤维时,相同养护龄期下,黏土的无侧限抗压强度较单独添加其中1种材料都有不同程度的提高;在本试验研究范围内,当黄原胶含量为2.00%,黄麻纤维加筋率为0.35%时,黏土的抗压强度最高;未经养护土体的抗压强度普遍较低;随着养护龄期的增长,黄原胶和黄麻与黏土接触更为紧密,同时添加剂和水的结合约束了土体的变形,使得黏土的无侧限抗压强度不断提高,其增速逐渐减缓。  相似文献   

10.
王德发 《路基工程》2022,(4):119-122
为摸清微生物诱导碳酸钙沉淀(MICP)技术大尺寸填筑体最佳灌浆间距及胶结深度,设计不同间距双孔灌浆模型试验,利用超声波检测技术研究不同间距双孔灌浆模型土体横向胶结距离及竖向胶结深度。试验结果表明:在灌浆过程中,填筑体模型超声波逐渐增大,不同灌浆间距模型各行测点波速变化趋势大致相同,且对经过20次灌浆循环得到的微生物注浆填筑体进行超声波检测,得到最优模型试验方案为灌浆孔间距10 cm,胶结深度13 cm。  相似文献   

11.
水玻璃是目前广泛使用的化学灌浆材料,对岩土体有明显的固化效果。为了提高水玻璃的固化效果,对温度改性水玻璃溶液固化硫酸盐渍土与复合改性水玻璃固化硫酸盐渍土进行了试验研究,并通过无侧限抗压强度试验、X射线衍射试验以及电镜扫描试验,分析探讨了温度改性水玻璃与复合改性水玻璃固化盐渍土的机制。结果表明,温度改性与复合改性后,水玻璃的固化效果有明显的提升。  相似文献   

12.
二灰土快速养生技术研究   总被引:1,自引:0,他引:1  
通过对石灰、粉煤灰和土进行物理、力学性质试验,以高温养生、标准养生为手段,通过配合比试验、抗压回弹模量试验、劈裂强度试验,对二灰土的力学性能进行了系统研究,取得了基本研究参数。通过对试验数据进行回归分析,得到高温养生与标准养生条件下材料的强度增长规律关系,从而由短龄期的高温养生强度确定标准养生下180d龄期的强度。并利用电镜扫描技术,对高温养生和标准养生条件下试样的微结构进行观测对比分析。研究表明,高温养生可以改善二灰土的微结构,显著地提高其早期强度,缩短稳定材料的养生龄期,快速确定二灰土的设计参数和施工配合比设计主要控制指标,解决目前工程设计和施工周期长的问题。  相似文献   

13.
对济南地区黄河冲积低液限粉土进行改良试验,研究以木质素作为固化剂对该地区粉土的改良效果。结果表明:木质素的掺入能减小土体空隙,与素土相比,木质素改良土的最大干密度增大,而最优含水率减小。木质素掺量和养护龄期对改良土的无侧限抗压强度UCS影响明显,木质素掺量在0%~16%时,UCS值随木质素掺量的增加而增大;UCS值随养护龄期的增加而增大,前7天的强度增长明显。将不同掺量的木质素改良土进行水稳性试验,发现木质素掺量为12%的改良土水稳性能最佳。  相似文献   

14.
为解决城市道路施工工期短、降雨多以及质量要求高的矛盾,结合长沙智能驾驶测试区公路,重点对高含水率路基回填土快速施工的改良方案进行了试验研究。采用不同配比的水泥和生石灰对高含水率路基回填土进行处置,并通过三轴剪切试验对处置后的改良土力学性质进行了对比研究。结果表明:通过在土体中加入水泥和石灰进行处理后,其无侧限抗压强度峰值增大63.8 kPa以上,最高可达201.3 kPa,且改良土的强度特征与固化剂的配比存在一定关系;生石灰和水泥配比分别为7%和0%,5%和2%,3%和4%的条件下均可使土样达到改良标准强  相似文献   

15.
选用一种新型水基聚合物材料作为固化剂,研究水基聚合物掺量和失水养护温度、时间对固化土强度影响规律,建立失水率与固化土强度的关联关系。结果表明:水基聚合物会略微降低固化土早期(3 天)强度,但失水养护后期(4~7 天)强度明显提升,掺量越高,效果越明显。温度升高能提高固化土强度增长速度,提高无侧限抗压强度的终期(7 天后)强度,但会降低养护完全时的间接抗拉强度。水基聚合物固化土强度形成,主要是由于水基聚合物与土颗粒之间的氢键作用以及碳长链在土颗粒之间扩散生成网状结构形成黏结作用导致,强度增长随失水率的增长而逐渐加快。  相似文献   

16.
水泥土渗透性的室内试验研究   总被引:1,自引:0,他引:1  
针对水泥土的渗透性问题,首先对比实施标准养护和海水养护条件下水泥土的渗透试验及微型贯入试验,研究水泥土的强度与渗透性的关系及劣化对水泥土渗透性的影响;其次,将制备好的水泥土试样不经养护立即实施渗透试验,模拟研究场地形成的水泥土的渗透性随时间的变化规律。试验结果表明,标准养护条件下,水泥掺量越大,龄期越长,水泥土强度越高,相应地渗透系数越小。但是,水泥土的渗透系数随龄期所产生的强度变化不大。海水养护条件下,由于水泥土发生劣化,导致水泥土的渗透性随龄期呈显著增大的趋势,说明劣化使水泥土强度降低的同时,也导致其渗透性增大。水泥土劣化滞后于海水渗透。场地形成的水泥土的渗透性随水泥掺量增大而减小。水泥土渗透性随时间呈现减小的趋势,前期渗透性减小较快,之后渗透性基本趋于稳定。  相似文献   

17.
为研究工业废弃木质素改良粉土路基技术的可行性,通过室内无侧限抗压强度、水稳性和干湿循环试验,分析掺量(质量分数)、龄期等因素对木质素改良粉土力学特性和耐久性的影响,并与石灰改良进行对比;基于微观分析结果,阐明木质素改良土体的机理;同时开展木质素改良粉土路基填料现场试验,对改良路基土进行加州承载比、回弹弯沉值、轻型动力触探等路用性能测试和环境影响评价。研究结果表明:木质素可有效提高粉土的抗压强度和耐久性,其改良粉土的最优掺量为12%,28 d龄期养护12%掺量试样的水稳系数为0.52,经历4次干湿循环后,质量损失率低于20%,木质素改良粉土的耐久性能显著优于石灰土;木质素与粉土主要发生了水解反应、质子化反应和静电引力作用,最终形成致密稳定的土体结构;15 d龄期养护后,12%掺量木质素改良路基粉土的路用性能指标均优于8%掺量生石灰土,回弹弯沉值在1 mm以内,贯入阻力随养护龄期和贯入深度的变化可表征改良路基土的强度特征;木质素改良路基粉土的土壤质量符合二级标准,论证了木质素固化改良粉土路基技术的可行性和环境友好性。  相似文献   

18.
新建蒙巴萨至内罗毕铁路穿越膨胀土地段累计长约95 km。膨胀土含水率发生变化时胀缩变形大,强度低,不能直接应用于工程建设。以石灰和火山灰为改良剂,对蒙内铁路相关区段和蒙巴萨铁路枢纽路基工程膨胀土填料进行改良,选择不同的改良掺配比,通过室内试验分析最佳掺配比,并对改良效果进行分析。结果表明:2%石灰+10%火山灰掺配比改良效果和经济性最好,养护时间为10~15天,此时改良膨胀土黏聚力和压缩系数达到最优,改良后的膨胀土对干湿循环造成的裂隙发育抑制作用更为明显,对水的敏感性明显降低,渗透系数变小。  相似文献   

19.
谢长征  吴巍 《路基工程》2017,(2):106-109
依托新建天门至潜江铁路路基工程,采用直剪试验,研究石灰改良膨胀土强度与干密度、含水率、石灰掺量、养护时间的关系。结果表明:干密度、含水率、石灰掺量、养护时间均影响石灰改良膨胀土剪切强度。其中,干密度、含水率、养护时间主要影响黏聚力,石灰掺量主要影响内摩擦角,另外养护时间对黏聚力的影响比对内摩擦角的影响大,黏聚力在3~15天内变化最快,后期黏聚力变化趋于缓慢。  相似文献   

20.
为了研究热养护对矿物掺合料高性能混凝土后期强度及微观结构的影响,不同恒温时长,不同恒温温度养护下矿物掺合料高性能混凝土进行强度试验和孔结构分析。结果表明:与标对准养护相比,热养护能快速提升混凝土早期强度,但热养温度越高热养时间越长混凝土后期的强度损伤越大,孔隙率也越大。80℃热养48h后转标养28d的强度损失为50℃的4.4倍,总孔隙率为1.091倍。与标准养护和自然养护相比,后养护方式采用Ca(OH)2饱和水溶液养护,对热养混凝土的后期强度和孔径分布有一定的改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号