首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
船用螺旋桨位于船舶最末端,既是驱使船舶前进的一个重要部件,又是船舶航行中引起噪声问题的一个主要因素。文章概述了螺旋桨空泡噪声、螺旋桨无空泡噪声和螺旋桨鸣音产生的原理,详细介绍目前国内外对这3种螺旋桨噪声的研究现状,分析并归纳研究螺旋桨噪声采用的方法,指出未来研究船用螺旋桨噪声的方向。  相似文献   

2.
针对17.7万吨散货轮船的螺旋桨在货船满载的状态下,机舱尾轴区域出现噪声这一问题,分别从尾轴、中间轴承、螺旋桨三个方面进行分析、研究和探讨,最终找出产生机舱尾轴区域噪声的原因是螺旋桨鸣音,提供了解决螺旋桨鸣音问题的方法以及途径,由此解决了机舱尾轴区域出现的噪声问题,供船舶轮机设计及修造人员参考。  相似文献   

3.
本文根据某船螺旋桨的噪声测量和激振试验结果,描述了螺旋桨鸣音的特点和产生鸣音的机理。 为了预报实桨的鸣音,按照作者提出的模拟条件,在空泡水筒中进行了模型试验。 文中还提出了几种消除鸣音的方法。经实船试验,证明这些方法是有效的。  相似文献   

4.
曹博  刘水根 《船电技术》2022,(11):27-31
本文针对某钢制双体船在航行试验时轴系出现异常噪声的现象进行了分析研究。根据轴系布置,通过分析造成轴系异响的因素,制定轴系异响故障排查方案,进行了轴系排查测试。根据排查结果,确定导致轴系异响的原因为螺旋桨鸣音,并对螺旋桨鸣音机理进行分析,最终确定通更换桨叶来解决轴系异响。  相似文献   

5.
大连造船厂建造的27000吨散装货船“望远”号在首航加拿大满载木材返航途中,螺旋桨产生明显的鸣音现象。这种现象在国内极为少见。该厂当即派出工作组去该船停泊地连云港码头,在现场对螺旋桨进行消音边加工,取得了理想的消音效果。本文以此为实例,并参考有关文献,对鸣音现象及消音措施作一粗浅的分析介绍。  相似文献   

6.
螺旋桨鸣音产生机理及防治方法   总被引:2,自引:0,他引:2  
华汉金 《船舶》2002,(2):20-23
本文以周期性旋涡分离流的非定常流体动力学观点对螺旋桨鸣音产生的机理作了探讨,得出了螺旋桨鸣音是一种典型的卡门涡诱发的流体动力弹性共振的结论,并结论在满足喙社规范的条件下,削薄桨叶随边至1mm左右以消除螺旋桨鸣音的方法。  相似文献   

7.
船舶能效设计指数(EEDI)的强制性实施对船舶设计提出了更高的要求,将有更多新型节能装置广泛应用于船舶上。通过试验研究,研发了船舶不对称节能尾鳍,并成功应用于实船上。船舶不对称尾鳍能够使尾部伴流场稳定化和均匀化,提高螺旋桨推进效率,降低能耗,实现船舶节能。此外,船舶不对称尾鳍还能减小螺旋桨激振力引起的船舶振动现象。  相似文献   

8.
正日本邮船(NYK)日前宣布联手MTI公司和日本造船联合(JMU)船厂,通过分析船舶螺旋桨在实际运行中的情况,开发出一种高效率螺旋桨,提高燃油效率减少二氧化碳排放。该公司表示,预计新型高效率螺旋桨将减少1.2%的二氧化碳排放量,这一新型螺旋桨预计将安装在2019年交付的两艘新造集装箱船上。日本邮船表示,通过观察螺旋桨产生空泡现象,并测量螺旋桨周围的流速来对螺旋桨实际运行进行分析。该公司表示,其项目合作伙伴分析了在远洋船舶上运行的螺旋桨的状况,并证实了模拟数据与实际情况相匹配的概率很高。该公司将使用高度仿真  相似文献   

9.
为了明确船舶推进中功率、力等各物理量之间的平衡关系,正确使用船舶主机防止其超负荷提供相应的理论依据,文章分析了螺旋桨的推力与船舶航行阻力的动态平衡过程.推导了螺旋桨转速、船舶的航速、螺旋桨的相对进程以及螺旋桨所消耗的功率等各物理量之间的关系,即:当螺旋桨的相对进程一定时,船舶的航速与螺旋桨的转速成正比,螺旋桨消耗的功率与其转速的三次方成正比;而当螺旋桨的转速一定时,随船舶航行阻力系数的增大,船舶的航速将减小,螺旋桨消耗的功率将增大.最后,在上述理论分析的基础上,进一步讨论了螺旋桨的转速发生变化时,船舶的航行经济性问题.  相似文献   

10.
针对某高速船螺旋桨在船舶营运初期出现严重腐蚀和污损的现象,分析了螺旋桨空泡腐蚀、电化学腐蚀、冲刷腐蚀及海生物污损等原因,探讨了高速船用螺旋桨的参数与耐腐蚀性能及污损问题的关系,提出了螺旋桨产品检验的关注点,并对后续高速船螺旋桨设计和应用给出改进建议。  相似文献   

11.
吴雁 《船电技术》2012,32(12):59-61
综合考虑船舶和螺旋桨的相互影响,建立了螺旋桨负载的数学模型,设计了船舶螺旋桨负载模拟装置的软硬件系统,确定了试验装置的基本构成,并通过试验验证了方案的正确性和可行性。  相似文献   

12.
为解决船舶螺旋桨内部角动量不平衡、精准解耦能力较弱等问题,提出基于CAD/CAM的船舶螺旋桨精度控制方法。通过控制轴系确定、定点坐标变换2个步骤,完成船舶螺旋桨结构的CAD/CAM建模。在此基础上,通过铣削方式与加工路径分析、残余精度量计算、微小控制误差确定3个步骤,完成新型精度控制方法的搭建,实现基于CAD/CAM的船舶螺旋桨精度控制技术研究。对比实验结果表明,与传统控制方法相比,应用新型精度控制方法后,船舶螺旋桨内部角动量呈现明显的平衡状态,精准解耦能力最大值可达到70%。  相似文献   

13.
通过构建真实反映船舶螺旋桨负荷特性的船舶电力推进动态负荷半实物在环仿真系统,研究船舶电力推进相关技术是一种可行和高效的研究手段。所构建的半实物在环仿真系统核心是一台运行螺旋桨动态负荷数学模型并输出控制量和仿真结果的数字仿真机。根据系统对实时性的要求,提出了以DSP+MCU嵌入式系统作为该数字仿真机,并描述了DSP+MCU嵌入式系统硬件、软件的具体结构和设计要点。最后通过仿真系统实验,证明了DSP+MCU嵌入式系统完全满足此处的应用要求。  相似文献   

14.
船舶长期航行,船体水线下船表面,特别是船底,会生长海藻、贝类等,致使船体水下部分和船底表面脏污和粗糙,这种现象称为污底。船舶污底将会增加船舶的航行阻力。假定螺旋桨转速不变,则船速将相应减慢,引起螺旋桨进程比λp减小,扭矩系数增大,螺旋桨所需转矩增加,因而螺旋桨特性曲线变陡,如图1,  相似文献   

15.
入射湍流与螺旋桨相互作用的低频宽带噪声预报研究   总被引:1,自引:0,他引:1  
对船舶螺旋桨低频宽带噪声理论预报方法进行了研究。文章全面综合归纳了现有船舶螺旋桨低频宽带噪声预报的主要方法,并对最常用的谱方法开展了分析,给出了详细的公式推导和数值离散过程;同时通过与文献中试验结果比较,证实了该预报方法的合理性。利用谱方法预报得到了某船舶螺旋桨的1/3Oct.低频宽带噪声,结果表明,船舶螺旋桨低频宽带噪声在叶频及其谐频处存在脉动的峰值(humps),其低频宽带噪声谱量级主要取决于螺旋桨0.7r处的特征值;通过研究得到了螺旋桨低频宽带噪声与主要参数的定量关系,研究成果可为螺旋桨的低噪声设计提供参考。  相似文献   

16.
为解决常规船舶螺旋桨物理动力特性仿真在多桨环境下仿真特性分析精度较低的不足,提出了多桨船舶螺旋桨物理动力特性仿真研究。基于多桨船舶螺旋桨物理动力特性仿真平台的搭建,引入多桨动力特性仿真算法,完成多桨船舶螺旋桨物理动力特性仿真模型的构建;依托多桨船舶螺旋桨推进动力特性、受阻动力特性分析,实现了多桨船舶螺旋桨物理动力特性仿真。试验数据表明,提出的动力特性仿真较常规特性仿真方法,仿真特性分析精度提高54.45%,适用于多桨船舶螺旋桨物理动力特性仿真。  相似文献   

17.
在双向航行极地船舶的基本设计与线型优化阶段,需要对艉部先行模式下的冰阻力进行可靠的试验预报。吊舱与螺旋桨对艉部船-冰作用存在影响,但现有试验规程尚未合理考虑在该影响下船舶冰阻力的变化。以中国双向航行极地科考船“雪龙2”号为原型开展冰水池模型试验,对艉部先行模式下连续破除平整冰的过程进行了模拟。通过水上-水下联合摄录设备观测了船尾前冰层的破坏现象,并描述了螺旋桨对艉部船-冰作用的影响;结合艉部先行试验数据,提出了艉部先行模式下确定冰阻力的推荐方法,为艉部先行模式下的船舶冰阻力试验预报提供指导。  相似文献   

18.
文章简述了船舶变矩螺旋桨的构造和特性。并对船舶变矩螺旋桨推进系统的组成、配制、遥控方式以及自动负荷控制方式提出了个人见解。同时还对船舶变矩螺旋桨和定矩螺旋桨进行了比对,提出了变矩螺旋桨的优缺点以及存在的问题。  相似文献   

19.
论述主柴油机螺旋桨(FPP、CPP)推进特性的同时,结合螺旋桨推力系数(KP)、扭矩系数(Km)、随螺旋桨进程比,(λp)的变化情况,指出λp在大于某一定值后,螺旋桨将出现负推力和负转矩,这称为螺旋桨的水涡轮工况。此现象多发生在船舶机动作业的紧急换向工况中,对于CPP船若控制不慎,可能引发主机飞车或使船舶实际换向时间太长,两者都将延误船舶紧急避碰时机。现推荐一种"能耗法"的控制方法,可以有效地缩短船舶紧急换向实际时间,避免海难事故,保障航行安全。  相似文献   

20.
为了研究船舶可调螺距螺旋桨螺距变化对轴系结构振动的影响,本文以某集装箱船的推进轴系和螺旋桨为例,采用有限元分析方法对其进行流固耦合仿真,分析船舶尾轴的应力与变形、振动以及模态变化。研究结果表明,螺旋桨螺距改变螺旋桨周围水域的流线运动状态,使得其受力变形更加不均匀。随着螺旋桨螺距的逐渐增大,轴系固有频率减小;船舶尾轴在一些特定频率附近会产生较大的共振幅值。为提高尾轴使用寿命,尾轴激励应避免这些频率。在一定范围内,尾轴在22°左右的螺距角下更容易产生较大的振动,可通过合理调节螺距角,以避免出现共振现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号