首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
When total parking supply in an urban downtown area is insufficient, morning commuters would choose their departure times not only to trade off bottleneck congestion and schedule delays, but also to secure a parking space. Recent studies found that an appropriate combination of reserved and unreserved parking spaces can spread the departures of those morning commuters and hence reduce their total travel cost. To further mitigate both traffic congestion and social cost from competition for parking, this study considers a parking reservation scheme with expiration times, where commuters with a parking reservation have to arrive at parking spaces for the reservation before a predetermined expiration time. We first show that if all parking reservations have the same expiration time, it is socially preferable to set the reservations to be non-expirable, i.e., without expiration time. However, if differentiated expiration times are properly designed, the total travel cost can be further reduced as compared with the reservation scheme without expiration time, since the peak will be further smoothed out. We explore socially desirable equilibrium flow patterns under the parking reservation scheme with differentiated expiration times. Finally, efficiencies of the reservation schemes are examined.  相似文献   

2.
Major commuting corridors in metropolitan areas generally comprise multiple transportation modes for commuters, such as transit (subways or buses), private vehicles, or park-and-ride combinations. During the morning peak hour, the commuters would choose one of the available transportation modes to travel through the corridors from rural/suburban living areas to urban working areas. This paper introduces a concept of transportation serviceability to evaluate a transportation mode’s service status in a specific link, route, road, or network during a certain period. The serviceability can be measured by the possibility that travelers choose a specific type of transportation service at a certain travel cost. The commuters’ modal-choice possibilities are calculated using a stochastic equilibrium model based on general travel cost. The modeling results illustrate how transportation serviceability is influenced by background traffic flow in a corridor, value of comfort for railway mode, and parking fee distribution.  相似文献   

3.
Morning commuters choose their departure times and travel modes based on a combinational evaluation of factors associated with the chances of running into bottleneck congestion, likely schedule delays, parking space availability as well as monetary costs of traveling and parking. This study investigates a morning commute problem with carpooling behavior under parking space constraint at destination. We consider such a scenario that as a competing mode of the transit line, the highway contains a carpool lane only used by carpoolers while all solo drivers are forced to use a general purpose (GP) lane. Unlike the standard bottleneck model, the rush-hour dynamic departure patterns with a binding parking supply vary with the relative proportion of the two lanes’ capacities. The possible departure pattern domain with different parking supply and lane capacity allocation is explored in terms of the relative extra carpool cost and distinguished between the bi-mode and multi-mode equilibria. It is found that compared with solo drivers, carpoolers have shorter rush hour in order to smooth the extra carpool cost. With the decrease of parking spots, the number of solo drivers cuts down gradually, whilst the number of carpoolers climbs up firstly and then declines in the multi-mode system. Under mild assumptions, the best system performance can be realized with the joint consideration of total travel cost and vehicle emission cost through optimizing the lane capacity allocation and the parking supply.  相似文献   

4.
This paper examines the dynamic user equilibrium of the morning commute problem in the presence of ridesharing program. Commuters simultaneously choose departure time from home and commute mode among three roles: solo driver, ridesharing driver, and ridesharing rider. Considering the congestion evolution over time, we propose a time-varying compensation scheme to maintain a positive ridesharing ridership at user equilibrium. To match the demand and the supply of ridesharing service over time, the compensation scheme should be set according to the inconvenience cost functions and the out-of-pocket cost functions. When the price charged per time unit is higher than the inconvenience cost per time unit perceived by the ridesharing drivers, the ridesharing participants will travel at the center of peak hours and solo drivers will commute at the two tails. Within the feasible region with positive ridership, the ridesharing program can reduce the congestion and all the commuters will be better off. To support system optimum (SO), we derive a time-varying toll combined with a flat ridesharing price from eliminating queuing delay. Under SO toll, the ridesharing program can attract more participants and have an enlarged feasible region. This reveals that the commuters are more tolerant to the inconvenience caused by sharing a ride at SO because of the lower travel time. Compared with no-toll equilibrium, both overall congestion and individual travel cost are further reduced at SO.  相似文献   

5.
Morning commuters choose their departure times based on a combination of factors—the chances of running into bottleneck congestion, the likely schedule delays, and parking space availability. This study investigates the morning commute problem with both bottleneck congestion and parking space constraints. In particular, it considers the situation when some commuters have reserved parking spots while others have to compete for public ones on a first-come-first-served basis. Unlike the traditional pure bottleneck model, the rush-hour dynamic traffic pattern with a binding parking capacity constraint varies with the relative proportions of the two classes of commuters. It is found that an appropriate combination of reserved and unreserved parking spots can temporally relieve traffic congestion at the bottleneck and hence reduce the total system cost, because commuters without a reserved parking spot are compelled to leave home earlier in order to secure a public parking spot. System performance is quantified in terms of the relative proportions of the two classes of commuters and is compared with those in the extreme cases when all auto commuters have to compete for parking and when none of them have to compete for one.  相似文献   

6.
The urban parking and the urban traffic systems are essential components of the overall urban transportation structure. The short-term interactions between these two systems can be highly significant and influential to their individual performance. The urban parking system, for example, can affect the searching-for-parking traffic, influencing not only overall travel speeds in the network (traffic performance), but also total driven distance (environmental conditions). In turn, the traffic performance can also affect the time drivers spend searching for parking, and ultimately, parking usage. In this study, we propose a methodology to model macroscopically such interactions and evaluate their effects on urban congestion.The model is built on a matrix describing how, over time, vehicles in an urban area transition from one parking-related state to another. With this model it is possible to estimate, based on the traffic and parking demand as well as the parking supply, the amount of vehicles searching for parking, the amount of vehicles driving on the network but not searching for parking, and the amount of vehicles parked at any given time. More importantly, it is also possible to estimate the total (or average) time spent and distance driven within each of these states. Based on that, the model can be used to design and evaluate different parking policies, to improve (or optimize) the performance of both systems.A simple numerical example is provided to show possible applications of this type. Parking policies such as increasing parking supply or shortening the maximum parking duration allowed (i.e., time controls) are tested, and their effects on traffic are estimated. The preliminary results show that time control policies can alleviate the parking-caused traffic issues without the need for providing additional parking facilities. Results also show that parking policies that intend to reduce traffic delay may, at the same time, increase the driven distance and cause negative externalities. Hence, caution must be exercised and multiple traffic metrics should be evaluated before selecting these policies.Overall, this paper shows how the system dynamics of urban traffic, based on its parking-related-states, can be used to efficiently evaluate the urban traffic and parking systems macroscopically. The proposed model can be used to estimate both, how parking availability can affect traffic performance (e.g., average time searching for parking, number of cars searching for parking); and how different traffic conditions (e.g., travel speed, density in the system) can affect drivers ability to find parking. Moreover, the proposed model can be used to study multiple strategies or scenarios for traffic operations and control, transportation planning, land use planning, or parking management and operations.  相似文献   

7.
Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.  相似文献   

8.
This paper extends Vickrey’s (1969) commute problem for commuters wishing to pass a bottleneck for both cars and transit that share finite road capacity. In addition to this more general framework considering two modes, the paper focuses on the evening rush, when commuters travel from work to home. Commuters choose which mode to use and when to travel in order to minimize the generalized cost of their own trips, including queueing delay and penalties for deviation from a preferred schedule of arrival and departure to and from work. The user equilibrium for the isolated morning and evening commutes are shown to be asymmetric because the schedule penalty in the morning is the difference between the departure and wished curves, and the schedule penalty in the evening is the difference between the arrival and wished curves. It is shown that the system optimum in the morning and evening peaks are symmetric because queueing delay is eliminated and the optimal arrival curves are the same as the departure curves.The paper then considers both the morning and evening peaks together for a single mode bottleneck (all cars) with identical travelers that share the same wished times. For a schedule penalty function of the morning departure and evening arrival times that is positive definite and has certain properties, a user equilibrium is shown to exist in which commuters travel in the same order in both peaks. The result is used to illustrate the user equilibrium for two cases: (i) commuters have decoupled schedule preferences in the morning and evening and (ii) commuters must work a fixed shift length but have flexibility when to start. Finally, a special case is considered with cars and transit: commuters have the same wished order in the morning and evening peaks. Commuters must use the same mode in both directions, and the complete user equilibrium solution reveals the number of commuters using cars and transit and the period in the middle of each rush when transit is used.  相似文献   

9.
ABSTRACT

Automated vehicles (AVs) could completely change mobility in the coming years and decades. As AVs are still under development and gathering empirical data for further analysis is not yet possible, existing studies mainly applied models and simulations to assess their impact. This paper provides a comprehensive review of modelling studies investigating the impacts of AVs on travel behaviour and land use. It shows that AVs are mostly found to increase vehicle miles travelled and reduce public transport and slow modes share. This particularly applies to private AVs, which are also leading to a more dispersed urban growth pattern. Shared automated vehicle fleets, conversely, could have positive impacts, including reducing the overall number of vehicles and parking spaces. Moreover, if it is assumed that automation would make the public transport system more efficient, AVs could lead to a favouring of urbanisation processes. However, results are very sensitive to model assumptions which are still very uncertain (e.g. the perception of time in AVs) and more research to gain further insight should have priority in future research as well as the development of the models and their further adaptation to AVs.  相似文献   

10.
Parking surveys provide quantitative data describing the spatial and temporal utilization of parking spaces within an area of interest. These surveys are important tools for parking supply management and infrastructure planning. Parking studies have typically been performed by tabulating observations by hand, limiting temporal resolution due to high labor cost. This paper investigates the possibility of automating the data gathering and information extraction in a proof of concept study using a two-dimensional scanning Light Detection and Ranging (LIDAR) sensor mounted on a vehicle, though the work is compatible with other ranging sensors, e.g., stereo vision. This study examines parallel parking in the opposing direction of travel. The ranging measurements are processed to estimate the location of the curb and the presence of objects in the road. Occlusion and location reasoning are then applied to determine which of the objects are vehicles, and whether a given vehicle is parked or is in the traffic-stream. The occupancy of the parking area, vehicle size, and vehicle-to-vehicle gaps are then measured. The algorithm was applied to an area with unmarked, on-street parking near a large university campus. Vehicle counts from 29 trips over 4 years were compared against concurrent ground truth with favorable results. The approach can also be applied to monitor parking in the direction of travel, eliminating the possibility of occlusions and simplifying the processing.  相似文献   

11.
This article proposes Δ-tolling, a simple adaptive pricing scheme which only requires travel time observations and two tuning parameters. These tolls are applied throughout a road network, and can be updated as frequently as travel time observations are made. Notably, Δ-tolling does not require any details of the traffic flow or travel demand models other than travel time observations, rendering it easy to apply in real-time. The flexibility of this tolling scheme is demonstrated in three specific traffic modeling contexts with varying traffic flow and user behavior assumptions: a day-to-day pricing model using static network equilibrium with link delay functions; a within-day adaptive pricing model using the cell transmission model and dynamic routing of vehicles; and a microsimulation of reservation-based intersection control for connected and autonomous vehicles with myopic routing. In all cases, Δ-tolling produces significant benefits over the no-toll case, measured in terms of average travel time and social welfare, while only requiring two parameters to be tuned. Some optimality results are also given for the special case of the static network equilibrium model with BPR-style delay functions.  相似文献   

12.
This paper studies on modelling and solving spatial and dynamic equilibrium travel pattern in a travel corridor. Consider a travel corridor connecting continuously distributed commuters to the city centre. The traffic is subject to flow congestion and the commuter heterogeneity is captured. The traffic flow dynamics is described by flow continuity equation and the equilibrium travel pattern is assumed to follow trip-timing condition. The continuous spatial and dynamic equilibrium travel pattern is formulated into a partial differential complementarity system, which is then solved through Godunov scheme. The proof of solution existence is provided, and a set of numerical experiments are demonstrated.  相似文献   

13.
Cruising-for-parking constraints mobility in urban networks. Car-users may have to cruise for on-street parking before reaching their destinations. The accessibility and the cost of parking significantly influence people's travel behavior (such as mode choice, or parking facility choice between on-street and garage). The cruising flow causes delays eventually to everyone, even users with destinations outside limited parking areas. It is therefore important to understand the impact of parking limitation on mobility, and to identify efficient parking policies for travel cost reduction. Most existing studies on parking fall short in reproducing the dynamic spatiotemporal features of traffic congestion in general, lack the treatment of dynamics of the cruising-for-parking phenomenon, or require detailed input data that are typically costly and difficult to collect. In this paper, we propose an aggregated and dynamic approach for modeling multimodal traffic with the treatment on parking, and utilize the approach to design dynamic parking pricing strategies. The proposed approach is based on the Macroscopic Fundamental Diagram (MFD), which can capture congestion dynamics at network-level for single-mode and bi-modal (car and bus) systems. A parsimonious parking model is integrated into the MFD-based multimodal modeling framework, where the dynamics of vehicular and passenger flows are considered with a change in the aggregated behavior (e.g. mode choice and parking facility choice) caused by cruising and congestion. Pricing strategies are developed with the objective of reducing congestion, as well as lowering the total travel cost of all users. A case study is carried out for a bi-modal city network with a congested downtown region. An elegant feedback dynamic parking pricing strategy can effectively reduce travel delay of cruising and the generic congestion. Remarkably, such strategy, which is applicable in real-time management with limited available data, is fairly as efficient as a dynamic pricing scheme obtained from system optimum conditions and a global optimization with full information about the future states of the system. Stackelberg equilibrium is also investigated in a competitive behavior between different parking facility operators. Policy indications on on-street storage capacity management and pricing are provided.  相似文献   

14.
Given a many-to-one bi-modal transportation network where each origin is connected to the destination by a bottleneck-constrained highway and a parallel transit line, we investigate the parking permit management methods to minimize traffic time cost and traffic emission cost simultaneously. More importantly, the optimal supply of parking spots is also discussed in the policies of parking permit. First, we derive the total travel costs and emission costs for the two cases of sufficient and insufficient parking spot provisions at the destination. Second, we propose a bi-objective model and solve the Pareto optimal parking permit distribution, given a certain level of parking supply. Third, we investigate the optimal parking supply in the policy of parking permit distribution, with the objectives of minimizing both total travel cost and traffic emission. Fourth, we provide a model of optimizing parking supply, in the policy of free trading of parking permits. Finally, the numerical examples are presented to illustrate the effectiveness of these schemes, and the numerical results show that restricting parking supply at the city center could be efficient to reduce traffic emission.  相似文献   

15.
Autonomous vehicles (AVs) potentially increase vehicle travel by reducing travel and parking costs and by providing improved mobility to those who are too young to drive or older people. The increase in vehicle travel could be generated by both trip diversion from other modes and entirely new trips. Existing studies however tend to overlook AVs’ impacts on entirely new trips. There is a need to develop a methodology for estimating possible impacts of AVs on entirely new trips across all age groups. This paper explores the impacts of AVs on car trips using a case study of Victoria, Australia. A new methodology for estimating entirely new trips associated with AVs is proposed by measuring gaps in travel need at different life stages. Results show that AVs would increase daily trips by 4.14% on average. The 76+ age group would have the largest increase of 18.5%, followed by the 18–24 age group and the 12–17 age group with 14.6 and 11.1% respectively. If car occupancy remains constant in AV scenarios, entirely new trips and trip diversions from public transport and active modes would lead to a 7.31% increase in car trips. However increases in car travel are substantially magnified by reduced car occupancy rates, a trend evidenced throughout the world. Car occupancy would need to increase by at least 5.3–7.3% to keep car trips unchanged in AV scenarios.  相似文献   

16.
In this paper, we study the economics of parking provision for the morning commute, where all the parking lots are owned and operated by private operators. The parking capacity allocations, parking fees and access times are considered in a parking market. First we solve the parking market equilibrium without regulatory intervention, revealing four types of competitive equilibrium. Only one of the four types of equilibrium, however, is found to be stable and realistic, and under it each parking area is preferred by the commuters during certain time periods. Compared to the case without parking choice, provision of parking through a competitive market is able to reduce commuters’ travel cost and queuing delay, but it does not necessarily lead to the most desirable market outcome that minimizes social cost or commuter cost. This issue can be addressed through market regulations, such as price-ceiling, capacity-floor or capacity-ceiling, and a quantity tax/subsidy regulation. It is found that both price-ceiling and quantity tax/subsidy regulations can efficiently reduce both the system cost and commuter cost under certain conditions, and help ensure the stability of the parking market. Numerical examples are also provided to illustrate these findings and furthermore, how a price ceiling or a quantity tax/subsidy should be set in a parking market under realistic model parameters.  相似文献   

17.
Urban truck parking policies include time restrictions, pricing policies, space management and enforcement. This paper develops a method for investigating the potential impact of truck parking policy in urban areas. An econometric parking choice model is developed that accounts for parking type and location. A traffic simulation module is developed that incorporates the parking choice model to select suitable parking facilities/locations. The models are demonstrated to evaluate the impact of dedicating on-street parking in a busy street system in the Toronto CBD. The results of the study show lower mean searching time for freight vehicles when some streets are reserved for freight parking, accompanied by higher search and walking times for passenger vehicles.  相似文献   

18.
Fully autonomous vehicles (AVs) have the potential to considerably change urban mobility in the future. This study simulates potential AV operating scenarios in the Greater Toronto Area (GTA), Canada, and assesses transportation system performance on a regional level. For each scenario, the base capacities of certain types of road links are modified to simulate the theoretical increase in throughput enabled by AV driving behavior. Another scenario examines driverless parking operations in downtown Toronto. Simulation results indicate that the increased attractiveness of freeways relative to other routes leads to slightly increased average travel distance as vehicles divert to access higher capacity road links. Average travel time is found to decrease by up to one-fifth at the 90% AV market penetration level. Concurrently, localized increases in congestion suggest that proactive transportation planning will be needed to mitigate negative consequences of AV adoption, especially in relation to induced demand for personal automobile travel.  相似文献   

19.
Morning commuters may have to depart from home earlier to secure a parking space when parking supply in the city center is insufficient. Recent studies show that parking reservations can reduce highway congestion and deadweight loss of parking competition simultaneously. This study develops a novel tradable parking permit scheme to realize or implement parking reservations when commuters are either homogeneous or heterogeneous in their values of time. It is found that an expirable parking permit scheme with an infinite number of steps, i.e., the ideal-scheme, is superior to a time-varying pricing scheme in the sense that designing a permit scheme does not require commuters’ value of time information and the performance of the scheme is robust to the variation of commuters’ value of time. Although it is impractical to implement the ideal-scheme with an infinite number of steps, the efficiency loss of a permit scheme with finite steps can be bounded in both cases of homogeneous and heterogeneous commuters. Moreover, considering the permit scheme may lead to an undesirable benefit distribution among commuters, we propose an equal cost-reduction distribution of parking permits where auto commuters with higher value of time will receive fewer permits.  相似文献   

20.
Interest in vehicle automation has been growing in recent years, especially with the very visible Google car project. Although full automation is not yet a reality there has been significant research on the impacts of self-driving vehicles on traffic flows, mainly on interurban roads. However, little attention has been given to what could happen to urban mobility when all vehicles are automated. In this paper we propose a new method to study how replacing privately owned conventional vehicles with automated ones affects traffic delays and parking demand in a city. The model solves what we designate as the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP), which dynamically assigns family trips in their automated vehicles in an urban road network from a user equilibrium perspective where, in equilibrium, households with similar trips should have similar transport costs. Automation allows a vehicle to travel without passengers to satisfy multiple household trips and, if needed, to park itself in any of the network nodes to benefit from lower parking charges. Nonetheless, the empty trips can also represent added congestion in the network. The model was applied to a case study based on the city of Delft, the Netherlands. Several experiments were done, comparing scenarios where parking policies and value of travel time (VTT) are changed. The model shows good equilibrium convergence with a small difference between the general costs of traveling for similar families. We were able to conclude that vehicle automation reduces generalized transport costs, satisfies more trips by car and is associated with increased traffic congestion because empty vehicles have to be relocated. It is possible for a city to charge for all street parking and create free central parking lots that will keep total transport costs the same, or reduce them. However, this will add to congestion as traffic competes to access those central nodes. In a scenario where a lower VTT is experienced by the travelers, because of the added comfort of vehicle automation, the car mode share increases. Nevertheless this may help to reduce traffic congestion because some vehicles will reroute to satisfy trips which previously were not cost efficient to be done by car. Placing the free parking in the outskirts is less attractive due to the extra kilometers but with a lower VTT the same private vehicle demand would be attended with the advantage of freeing space in the city center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号