首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
This paper addresses a Time Dependent Capacitated Vehicle Routing Problem with stochastic vehicle speeds and environmental concerns. The problem has been formulated as a Markovian Decision Process. As distinct from the traditional attempts on the problem, while estimating the amount of fuel consumption and emissions, the model takes time-dependency and stochasticity of the vehicle speeds into account. The Time Dependent Capacitated Vehicle Routing Problem is known to be NP-Hard for even deterministic settings. Incorporating uncertainty to the problem increases complexity, which renders classical optimization methods infeasible. Therefore, we propose an Approximate Dynamic Programming based heuristic as a decision aid tool for the problem. The proposed Markovian Decision Model and Approximate Dynamic Programming based heuristic are flexible in terms that more environmentally friendly solutions can be obtained by changing the objective function from cost minimization to emissions minimization. The added values of the proposed decision support tools have been shown through computational analyses on several instances. The computational analyses show that incorporating vehicle speed stochasticity into decision support models has potential to improve the performance of resulting routes in terms of travel duration, emissions and travel cost. In addition, the proposed heuristic provides promising results within relatively short computation times.  相似文献   

2.
This paper studies a vehicle routing problem with time-dependent and stochastic travel times. In our problem setting, customers have soft time windows. A mathematical model is used in which both efficiency for service as well as reliability for customers are taken into account. Depending on whether service times are included or not, we consider two versions of this problem. Two metaheuristics are built: a Tabu Search and an Adaptive Large Neighborhood Search. We carry out our experiments for well-known problem instances and perform comprehensive analyses on the numerical results in terms of the computational time and the solution quality. Experiments confirm that the proposed procedure is effective to obtain very good solutions to be performed in real-life environment.  相似文献   

3.
Investigation of the dynamic processes of activity scheduling and trip chaining has been an interest of transportation researchers over the past decade because of its relevance to the effectiveness of congestion management and intelligent transportation systems. To empirically examine the processes, a computerized survey instrument is developed to collect household activity scheduling data. The instrument is unique in that it records the evolution of activity schedules from intentions to final outcomes for a weekly period. This paper summarizes the investigation on the dynamic processes of activity scheduling and trip chaining based on data collected from a pilot study of the instrument. With the data, ordered logit models are applied to identify factors that are pertinent to the scheduling horizon of activities. Results of the empirical analysis show that a daily schedule often starts with certain activities occupying a portion of the schedule and other activities are then arranged around these pre-occupants. Activities of shorter duration are more likely to be opportunistically inserted in a schedule already anchored by their longer duration counterparts. Persons with children often expect more constraining activities than those with no children. The analysis also shows that female respondents tend to be more structured in terms of how the week is planned. Additionally, analysis of travel patterns reveals that many trip-chains are formed opportunistically. Travel time required to reach an activity is positively related to the scheduling horizon for the activity, with more distant stops being planned earlier than closer locations.  相似文献   

4.
The dynamic shortest path problem with time-dependent stochastic disruptions consists of finding a route with a minimum expected travel time from an origin to a destination using both historical and real-time information. The problem is formulated as a discrete time finite horizon Markov decision process and it is solved by a hybrid Approximate Dynamic Programming (ADP) algorithm with a clustering approach using a deterministic lookahead policy and value function approximation. The algorithm is tested on a number of network configurations which represent different network sizes and disruption levels. Computational results reveal that the proposed hybrid ADP algorithm provides high quality solutions with a reduced computational effort.  相似文献   

5.
This paper proposes a unified approach to modeling heterogonous risk-taking behavior in route choice based on the theory of stochastic dominance (SD). Specifically, the first-, second-, and third-order stochastic dominance (FSD, SSD, TSD) are respectively linked to insatiability, risk-aversion and ruin-aversion within the framework of utility maximization. The paths that may be selected by travelers of different risk-taking preferences can be obtained from the corresponding SD-admissible paths, which can be generated using general dynamic programming. This paper also analyzes the relationship between the SD-based approach and other route choice models that consider risk-taking behavior. These route choice models employ a variety of reliability indexes, which often make the problem of finding optimal paths intractable. We show that the optimal paths with respect to these reliability indexes often belong to one of the three SD-admissible path sets. This finding offers not only an interpretation of risk-taking behavior consistent with the SD theory for these route choice models, but also a unified and computationally viable solution approach through SD-admissible path sets, which are usually small and can be generated without having to enumerate all paths. A generic label-correcting algorithm is proposed to generate FSD-, SSD-, and TSD-admissible paths, and numerical experiments are conducted to test the algorithm and to verify the analytical results.  相似文献   

6.
In a heavily congested metro line, unexpected disturbances often occur to cause the delay of the traveling passengers, infeasibility of the current timetable and reduction of the operational efficiency. Due to the uncertain and dynamic characteristics of passenger demands, the commonly used method to recover from disturbances in practice is to change the timetable and rolling stock manually based on the experiences and professional judgements. In this paper, we develop a stochastic programming model for metro train rescheduling problem in order to jointly reduce the time delay of affected passengers, their total traveling time and operational costs of trains. To capture the complexity of passenger traveling characteristics, the arriving ratio of passengers at each station is modeled as a non-homogeneous poisson distribution, in which the intensity function is treated as time-varying origin-to-destination passenger demand matrices. By considering the number of on-board passengers, the total energy usage is modeled as the difference between the tractive energy consumption and the regenerative energy. Then, we design an approximate dynamic programming based algorithm to solve the proposed model, which can obtain a high-quality solution in a short time. Finally, numerical examples with real-world data sets are implemented to verify the effectiveness and robustness of the proposed approaches.  相似文献   

7.
After a major service disruption on a single-track rail line, dispatchers need to generate a series of train meet-pass plans at different decision times of the rescheduling stage. The task is to recover the impacted train schedule from the current and future disturbances and minimize the expected additional delay under different forecasted operational conditions. Based on a stochastic programming with recourse framework, this paper incorporates different probabilistic scenarios in the rolling horizon decision process to recognize (1) the input data uncertainty associated with predicted segment running times and segment recovery times and (2) the possibilities of rescheduling decisions after receiving status updates. The proposed model periodically optimizes schedules for a relatively long rolling horizon, while selecting and disseminating a robust meet-pass plan for every roll period. A multi-layer branching solution procedure is developed to systematically generate and select meet-pass plans under different stochastic scenarios. Illustrative examples and numerical experiments are used to demonstrate the importance of robust disruption handling under a dynamic and stochastic environment. In terms of expected total train delay time, our experimental results show that the robust solutions are better than the expected value-based solutions by a range of 10-30%.  相似文献   

8.
Autonomous vehicle (AV) technology holds great promise for improving the efficiency of traditional vehicle sharing systems. In this paper, we investigate a new vehicle sharing system using AVs, referred to as autonomous vehicle sharing and reservation (AVSR). In such a system, travelers can request AV trips ahead of time and the AVSR system operator will optimally arrange AV pickup and delivery schedules and AV trip chains based on these requests. A linear programming model is proposed to efficiently solve for optimal solutions for AV trip chains and required fleet size through constructed AVSR networks. Case studies show that AVSR can significantly increase vehicle use rate (VUR) and consequentially reduce vehicle ownership significantly. In the meantime, it is found that the actual vehicle miles traveled (VMT) in AVSR systems is not significantly more than that of conventional taxis, despite inevitable empty hauls for vehicle relocation in AVSR systems. The results imply huge potential benefits from AVSR systems on improving mobility and sustainability of our current transportation systems.  相似文献   

9.
In this study, to incorporate realistic discrete stochastic capacity distribution over a large number of sampling days or scenarios (say 30–100 days), we propose a multi-scenario based optimization model with different types of traveler knowledge in an advanced traveler information provision environment. The proposed method categorizes commuters into two classes: (1) those with access to perfect traffic information every day, and (2) those with knowledge of the expected traffic conditions (and related reliability measure) across a large number of different sampling days. Using a gap function framework or describing the mixed user equilibrium under different information availability over a long-term steady state, a nonlinear programming model is formulated to describe the route choice behavior of the perfect information (PI) and expected travel time (ETT) user classes under stochastic day-dependent travel time. Driven by a computationally efficient algorithm suitable for large-scale networks, the model was implemented in a standard optimization solver and an open-source simulation package and further applied to medium-scale networks to examine the effectiveness of dynamic traveler information under realistic stochastic capacity conditions.  相似文献   

10.
This paper proposes a novel dynamic speed limit control model accounting for uncertain traffic demand and supply in a stochastic traffic network. First, a link based dynamic network loading model is developed to simulate the traffic flow propagation allowing the change of speed limits. Shockwave propagation is well defined and captured by checking the difference between the queue forming end and the dissipation end. Second, the dynamic speed limit problem is formulated as a Markov Decision Process (MDP) problem and solved by a real time control mechanism. The speed limit controller is modeled as an intelligent agent interacting with the stochastic network environment stochastic network environment to assign time dependent link based speed limits. Based on different metrics, e.g. total network throughput, delay time, vehicular emissions are optimized in the modeling framework, the optimal speed limit scheme is obtained by applying the R-Markov Average Reward Technique (R-MART) based reinforcement learning algorithm. A case study of the Sioux Falls network is constructed to test the performance of the model. Results show that the total travel time and emissions (in terms of CO) are reduced by around 18% and 20% compared with the base case of non-speed limit control.  相似文献   

11.
In this paper, a vehicle sharing system with multi-transportation modes and allowable shortage is presented. This model aims to minimize the system's total cost by using optimum locations and number of stations, routes, transportation modes, station capacities for different modes and time between stations balancing. Because of the model's complexity, currently available proprietary software is not able to solve the model in a reasonable computational time, so a hybrid algorithm based on a genetic algorithm (GA) and particle swarm optimization is presented. The results confirm its efficiency compared with the classic GA and exact solution methods. Moreover, a sensitivity analysis shows the applicability of the proposed algorithm.  相似文献   

12.
Currently there is a true dichotomy in the pavement maintenance and rehabilitation (M&R) literature. On the one hand, there are integer programming-based models that assume that parameters are deterministically known. On the other extreme, there are stochastic models, with the most popular class being based on the theory of Markov decision processes that are able to account for various sources of uncertainties observed in the real-world. In this paper, we present an integer programming-based alternative to account for these uncertainties. A critical feature of the proposed models is that they provide – a priori – probabilistic guarantees that the prescribed M&R decisions would result in pavement condition scores that are above their critical service levels, using minimal assumptions regarding the sources of uncertainty. By construction of the models, we can easily determine the additional budget requirements when additional sources of uncertainty are considered, starting from a fully deterministic model. We have coined this additional budget requirement the price of uncertainty to distinguish from previous related work where additional budget requirements were studied due to parameter uncertainties in stochastic models. A numerical case study presents valuable insights into the price of uncertainty and shows that it can be large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号