共查询到20条相似文献,搜索用时 0 毫秒
1.
The main purpose of this paper is to develop a bi-level pricing model to minimize the CO2e emissions and the total travel time in a small road network. In the lower level of the model, it is assumed that users of the road network find a dynamic user equilibrium which minimizes the total costs of those in the system. For the higher level of the model, different road toll strategies are applied in order to minimize the CO2e emissions. The model has been applied to an illustrative example. It shows the effects on traffic flows, revenues, total time and CO2e emissions for different numbers of servers collecting tolls and different pricing strategies over a morning peak traffic period. The results show that the CO2e emissions produced can be significantly affected by the number of servers and the type of toll strategy employed. The model is also used to find the best toll strategy when there is a constraint on the revenue that is required to be raised from the toll and how this affects the emissions produced. Further runs compare strategies to minimize the CO2e emissions with those that minimize total travel time in the road system. In the illustrative example, the results for minimizing CO2e emissions are shown to be similar to the results obtained from minimizing the total travel time. 相似文献
2.
André de Palma Robin Lindsey 《Transportation Research Part C: Emerging Technologies》2011,19(6):1377-1399
This paper reviews the methods and technologies for congestion pricing of roads. Congestion tolls can be implemented at scales ranging from individual lanes on single links to national road networks. Tolls can be differentiated by time of day, road type and vehicle characteristics, and even set in real time according to current traffic conditions. Conventional toll booths have largely given way to electronic toll collection technologies. The main technology categories are roadside-only systems employing digital photography, tag & beacon systems that use short-range microwave technology, and in-vehicle-only systems based on either satellite or cellular network communications. The best technology choice depends on the application. The rate at which congestion pricing is implemented, and its ultimate scope, will depend on what technology is used and on what other functions and services it can perform. 相似文献
3.
Robert W. Poole Jr. 《Transportation》1992,19(4):383-396
This paper proposes a demonstration project to test the effectiveness of congestion pricing in an urban area. It reviews the general theoretical case for such pricing and summarizes recent international interest in congestion pricing. Next, it sets forth the reasons why demonstration projects are needed, both to add to our knowledge about how effective congestion pricing may prove to be, and to address political and other public-acceptance barriers to implementation of the concept. The paper then defines a specific proposed test site for congestion pricing: a new toll road being planned for Orange County, California. It is proposed that instead of charging flat-rate tolls, the transportation agency could charge peak and off-peak tolls, increasing the level of the peak charge each year over a period of up to 10 years unless or until toll revenues decline below the levels forecast under the flat-rate toll alternative. Measurements of traffic flow and ride-sharing behavior would be made, as well as calculations of emission-reduction effects. The paper concludes with a brief discussion of marketing and political considerations involved in conducting such a demonstration.Abbreviations ARB
Air Resources Board
- AVI
Automatic Vehicle Identification
- CDMG
Corridor Design Management Group
- HOV
High-occupancy vehicle
- SJHTC
San Joaquin Hills Transportation Corridor
- TCA
Transportation Corridor Agency
- VMT
Vehicle miles traveled 相似文献
4.
First-best marginal cost pricing (MCP) in traffic networks has been extensively studied with the assumption of deterministic travel demand. However, this assumption may not be realistic as a transportation network is exposed to various uncertainties. This paper investigates MCP in a traffic network under stochastic travel demand. Cases of both fixed and elastic demand are considered. In the fixed demand case, travel demand is represented as a random variable, whereas in the elastic demand case, a pre-specified random variable is introduced into the demand function. The paper also considers a set of assumptions of traveler behavior. In the first case, it is assumed that the traveler considers only the mean travel time in the route choice decision (risk-neutral behavior), and in the second, both the mean and the variance of travel time are introduced into the route choice model (risk-averse behavior). A closed-form formulation of the true marginal cost toll for the stochastic network (SN-MCP) is derived from the variational inequality conditions of the system optimum and user equilibrium assignments. The key finding is that the calculation of the SN-MCP model cannot be made by simply substituting related terms in the original MCP model by their expected values. The paper provides a general function of SN-MCP and derives the closed-form SN-MCP formulation for specific cases with lognormal and normal stochastic travel demand. Four numerical examples are explored to compare network performance under the SN-MCP and other toll regimes. 相似文献
5.
This paper addresses the toll pricing framework for the first‐best pricing with logit‐based stochastic user equilibrium (SUE) constraints. The first‐best pricing is usually known as marginal‐cost toll, which can be obtained by solving a traffic assignment problem based on the marginal cost functions. The marginal‐cost toll, however, has rarely been implemented in practice, because it requires every specific link on the network to be charged. Thus, it is necessary to search for a substitute of the marginal cost pricing scheme, which can reduce the toll locations but still minimize the total travel time. The toll pricing framework is the set of all the substitute toll patterns of the marginal cost pricing. Assuming the users' route choice behavior following the logit‐based SUE principle, this paper has first derived a mathematical expression for the toll pricing framework. Then, by proposing an origin‐based variational inequality model for the logit‐based SUE problem, another toll pricing framework is built, which avoids path enumeration/storage. Finally, the numerical test shows that many alternative pricing patterns can inherently reduce the charging locations and total toll collected, while achieving the same equilibrium link flow pattern. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
6.
High Occupancy Toll (HOT) lanes are emerging as a solution to the underutilization of High Occupancy Vehicle (HOV) lanes and also a means to generate revenue for the State Departments of Transportation. This paper proposes a method to determine the toll price dynamically in response to the changes in traffic condition, and describes the procedures for estimating the essential parameters. Such parameters include expected delays, available capacity for toll-paying vehicles and distribution of travelers’ value of time (VOT). The objective function of the proposed pricing strategy can be flexibly modified to minimize delay, maximize revenue or combinations of specified levels of delay and revenue. Real-world data from a 14-mile of freeway segment in the San Francisco Bay Area are used to demonstrate the applicability and feasibility of the proposed method, and findings and implications from this case study are discussed. 相似文献
7.
Modeling intermodal equilibrium for bimodal transportation system design problems in a linear monocentric city 总被引:2,自引:0,他引:2
Zhi-Chun Li William H.K. Lam S.C. Wong 《Transportation Research Part B: Methodological》2012,46(1):30-49
This paper investigates the intermodal equilibrium, road toll pricing, and bus system design issues in a congested highway corridor with two alternative modes - auto and bus - which share the same roadway along this corridor. On the basis of an in-depth analysis of the demand and supply sides of the bimodal transportation system, the mode choice equilibrium of travelers along the continuum corridor is first presented and formulated as an equivalent variational inequality problem. The solution properties of the bimodal continuum equilibrium formulation are analytically explored. Two models, which account for different infrastructure/system regulatory regimes (public and private), are then proposed. In the public regulatory model, the road toll location and charge level are simultaneously optimized together with the bus service fare and frequency. In the private regulatory model, the fare and frequency of bus services, which are operated by a profit-driven private operator, are optimized for exogenously given toll pricing schemes. Finally, an illustrative example is given to demonstrate the application of the proposed models. Sensitivity analysis of residential/household distribution along the corridor is carried out together with a comparison of four different toll pricing schemes (no toll, first best, distance based, and location based). Insightful findings are reported on the interrelationships among modal competition, market regulatory regimes, toll pricing schemes, and urban configurations as well as their implications in practice. 相似文献
8.
This paper analyzes the dynamic traffic assignment problem on a two-alternative network with one alternative subject to a dynamic pricing that responds to real-time arrivals in a system optimal way. Analytical expressions for the assignment, revenue and total delay in each alternative are derived as a function of the pricing strategy. It is found that minimum total system delay can be achieved with many different pricing strategies. This gives flexibility to operators to allocate congestion to either alternative according to their specific objective while maintaining the same minimum total system delay. Given a specific objective, the optimal pricing strategy can be determined by finding a single parameter value in the case of HOT lanes. Maximum revenue is achieved by keeping the toll facility at capacity with no queues for as long as possible. Guidelines for implementation are discussed. 相似文献
9.
The benefit, in terms of social surplus, from introducing congestion charging schemes in urban networks is depending on the design of the charging scheme. The literature on optimal design of congestion pricing schemes is to a large extent based on static traffic assignment, which is known for its deficiency in correctly predict travel times in networks with severe congestion. Dynamic traffic assignment can better predict travel times in a road network, but are more computational expensive. Thus, previously developed methods for the static case cannot be applied straightforward. Surrogate‐based optimization is commonly used for optimization problems with expensive‐to‐evaluate objective functions. In this paper, we evaluate the performance of a surrogate‐based optimization method, when the number of pricing schemes, which we can afford to evaluate (because of the computational time), are limited to between 20 and 40. A static traffic assignment model of Stockholm is used for evaluating a large number of different configurations of the surrogate‐based optimization method. Final evaluation is performed with the dynamic traffic assignment tool VisumDUE, coupled with the demand model Regent, for a Stockholm network including 1240 demand zones and 17 000 links. Our results show that the surrogate‐based optimization method can indeed be used for designing a congestion charging scheme, which return a high social surplus. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
This paper addresses the optimal toll design problem for the cordon-based congestion pricing scheme, where both a time-toll and a nonlinear distance-toll (i.e., joint distance and time toll) are levied for each network user’s trip in a pricing cordon. The users’ route choice behaviour is assumed to follow the Logit-based stochastic user equilibrium (SUE). We first propose a link-based convex programming model for the Logit-based SUE problem with a joint distance and time toll pattern. A mathematical program with equilibrium constraints (MPEC) is developed to formulate the optimal joint distance and time toll design problem. The developed MPEC model is equivalently transformed into a semi-infinite programming (SIP) model. A global optimization method named Incremental Constraint Method (ICM) is designed for solving the SIP model. Finally, two numerical examples are used to assess the proposed methodology. 相似文献
11.
Congestion pricing schemes have been traditionally derived based on analytical representations of travel demand and traffic flows, such as in bottleneck models. A major limitation of these models, especially when applied to urban networks, is the inconsistency with traffic dynamics and related phenomena such as hysteresis and the capacity drop. In this study we propose a new method to derive time-varying tolling schemes using the concept of the Network Fundamental Diagram (NFD). The adopted method is based on marginal cost pricing, while it also enables to account realistically for the dynamics of large and heterogeneous traffic networks. We derive two alternative cordon tolls using network-aggregated traffic flow conditions: a step toll that neglects the spatial distribution of traffic by simply associating the marginal costs of any decrease in production within the NFD to the surplus of traffic; and a step toll that explicitly accounts for how network performance is also influenced by the spatial variance in a 3D-NFD. This pricing framework is implemented in the agent-based simulation model MATSim and applied to a case study of the city of Zurich. The tolling schemes are compared with a uniform toll, and they highlight how the inhomogeneous distribution of traffic may compromise the effectiveness of cordon tolls. 相似文献
12.
Xiaopeng LiYanfeng Ouyang 《Transportation Research Part B: Methodological》2011,45(9):1346-1361
Unlike linear car-following models, nonlinear models generally can generate more realistic traffic oscillation phenomenon, but nonlinearity makes analytical quantification of oscillation characteristics (e.g, periodicity and amplitude) significantly more difficult. This paper proposes a novel mathematical framework that accurately quantifies oscillation characteristics for a general class of nonlinear car-following laws. This framework builds on the describing function technique from nonlinear control theory and is comprised of three modules: expression of car-following models in terms of oscillation components, analyses of local and asymptotic stabilities, and quantification of oscillation propagation characteristics. Numerical experiments with a range of well-known nonlinear car-following laws show that the proposed approach is capable of accurately predicting oscillation characteristics under realistic physical constraints and complex driving behaviors. This framework not only helps further understand the root causes of the traffic oscillation phenomenon but also paves a solid foundation for the design and calibration of realistic nonlinear car-following models that can reproduce empirical oscillation characteristics. 相似文献
13.
This paper investigates the convergence of the trial-and-error procedure to achieve the system optimum by incorporating the day-to-day evolution of traffic flows. The path flows are assumed to follow an ‘excess travel cost dynamics’ and evolve from disequilibrium states to the equilibrium day by day. This implies that the observed link flow pattern during the trial-and-error procedure is in disequilibrium. By making certain assumptions on the flow evolution dynamics, we prove that the trial-and-error procedure is capable of learning the system optimum link tolls without requiring explicit knowledge of the demand functions and flow evolution mechanism. A methodology is developed for updating the toll charges and choosing the inter-trial periods to ensure convergence of the iterative approach towards the system optimum. Numerical examples are given in support of the theoretical findings. 相似文献
14.
We study the shared autonomous vehicle (SAV) routing problem while considering congestion. SAVs essentially provide a dial-a-ride service to travelers, but the large number of vehicles involved (tens of thousands of SAVs to replace personal vehicles) results in SAV routing causing significant congestion. We combine the dial-a-ride service constraints with the linear program for system optimal dynamic traffic assignment, resulting in a congestion-aware formulation of the SAV routing problem. Traffic flow is modeled through the link transmission model, an approximate solution to the kinematic wave theory of traffic flow. SAVs interact with travelers at origins and destinations. Due to the large number of vehicles involved, we use a continuous approximation of flow to formulate a linear program. Optimal solutions demonstrate that peak hour demand is likely to have greater waiting and in-vehicle travel times than off-peak demand due to congestion. SAV travel times were only slightly greater than system optimal personal vehicle route choice. In addition, solutions can determine the optimal fleet size to minimize congestion or maximize service. 相似文献
15.
Traffic management during an evacuation and the decision of where to locate the shelters are of critical importance to the performance of an evacuation plan. From the evacuation management authority’s point of view, the desirable goal is to minimize the total evacuation time by computing a system optimum (SO). However, evacuees may not be willing to take long routes enforced on them by a SO solution; but they may consent to taking routes with lengths not longer than the shortest path to the nearest shelter site by more than a tolerable factor. We develop a model that optimally locates shelters and assigns evacuees to the nearest shelter sites by assigning them to shortest paths, shortest and nearest with a given degree of tolerance, so that the total evacuation time is minimized. As the travel time on a road segment is often modeled as a nonlinear function of the flow on the segment, the resulting model is a nonlinear mixed integer programming model. We develop a solution method that can handle practical size problems using second order cone programming techniques. Using our model, we investigate the importance of the number and locations of shelter sites and the trade-off between efficiency and fairness. 相似文献
16.
A vehicle approaching a toll plaza observes the queues at each of the available toll-lanes before choosing which to join. This choice process, the arrival process of vehicles and the service characteristics of the toll-booths, affect the queues and delay the drivers. In this paper, queueing at a toll plaza is modelled as a multiple-queue queueing system where the arrival process to a queue (toll-lane) is dependent on the state of all the queues. In the past, such systems have been modelled mathematically only for two queues and are not applicable for toll plazas with three or more toll-lanes. The proposed model determines the steady-state probability density function (pdf) for the queues at large toll plazas. This study is used to determine the number of toll-lanes or the length of the upstream queueing area required to achieve certain user-specified levels-of-service. Expected delay and maximum queue length are used as level-of-service measures. Indicative design charts are also provided. 相似文献
17.
This paper develops a novel linear programming formulation for autonomous intersection control (LPAIC) accounting for traffic dynamics within a connected vehicle environment. Firstly, a lane based bi-level optimization model is introduced to propagate traffic flows in the network, accounting for dynamic departure time, dynamic route choice, and autonomous intersection control in the context of system optimum network model. Then the bi-level optimization model is transformed to the linear programming formulation by relaxing the nonlinear constraints with a set of linear inequalities. One special feature of the LPAIC formulation is that the entries of the constraint matrix has only {−1, 0, 1} values. Moreover, it is proved that the constraint matrix is totally unimodular, the optimal solution exists and contains only integer values. It is also shown that the traffic flows from different lanes pass through the conflict points of the intersection safely and there are no holding flows in the solution. Three numerical case studies are conducted to demonstrate the properties and effectiveness of the LPAIC formulation to solve autonomous intersection control. 相似文献
18.
Kien Doan Satish Ukkusuri Lanshan Han 《Transportation Research Part B: Methodological》2011,45(9):1483-1500
In this paper, we study the pricing strategies in the discrete time single bottleneck model with general heterogeneous commuters. We first prove that in the system optimal assignment, the queue time must be zero for all the departures. Based on this result, the system optimal problem is formulated as a linear program. The solution existence and uniqueness are discussed. Applying linear programming duality, we then prove that the optimal dual variable values provide an optimal toll with which the system optimal solution is also an equilibrium solution. Extensive computational results are reported to demonstrate the insights gained from the formulations in this paper. These results confirm that a system optimal equilibrium can be found using the proposed approach. 相似文献
19.
Thanks to its high dimensionality and a usually non-convex constraint set, system optimal dynamic traffic assignment remains one of the most challenging problems in transportation research. This paper identifies two fundamental properties of the problem and uses them to design an efficient solution procedure. We first show that the non-convexity of the problem can be circumvented by first solving a relaxed problem and then applying a traffic holding elimination procedure to obtain the solution(s) of the original problem. To efficiently solve the relaxed problem, we explore the relationship between the relaxed problems based on different traffic flow models (PQ, SQ, CTM) and a minimal cost flow (MCF) problem for a special space-expansion network. It is shown that all the four problem formulations produce the same minimal system cost and share one common solution which does not involve inside queues in the network. Efficient solution algorithms such as the network simplex method can be applied to solve the MCF problem and identify such an optimal traffic pattern. Numerical examples are also presented to demonstrate the efficiency of the proposed solution procedure. 相似文献
20.
Singapore motorisation restraint and its implications on travel behaviour and urban sustainability 总被引:1,自引:0,他引:1
Piotr S. Olszewski 《Transportation》2007,34(3):319-335
The example of Singapore shows that rapid urban and economic growth does not have to bring traffic congestion and pollution.
Singapore has chosen to restrain car traffic demand due to its limited land supply. Transport policy based on balanced development
of road and transit infrastructure and restraint of traffic has been consistently implemented for the past 30 years. Combined
with land use planning, it resulted in a modern transport system, which is free from major congestion and provides users with
different travel alternatives. As the economic growth caused a substantial increase in demand for cars, several pricing policies
were introduced with the aim of restraining car ownership and usage. Growth of the vehicle population is now controlled and
potentially congested roads are subject to road pricing. These measures help to keep the roads free from major congestion,
maintain car share of work trips below 25% and keep the transport energy usage low. Although Singapore conditions are in many
aspects unique, its travel demand experience can provide useful lessons for other rapidly growing cities in Asia.
相似文献
Piotr S. OlszewskiEmail: |