共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is the first in a series of reports presenting a framework for the hierarchical design of feedback controllers for traffic lights in urban networks. The goal of the research is to develop an easy to understand methodology for designing model based feedback controllers that use the current state estimate in order to select the next switching times of traffic lights. In this paper we introduce an extension of the cell transmission model that describes with sufficient accuracy the major causes of delay for urban traffic. We show that this model is computationally fast enough such that it can be used in a model predictive controller that decides for each intersection, taking into account the vehicle density as estimated along all links connected to the intersection, what switching time minimizes the local delay for all vehicles over a prediction horizon of a few minutes. The implementation of this local MPC only requires local online measurements and local model information (unlike the coordinated MPC, to be introduced in the next paper in this series, that takes into account interactions between neighbouring intersections). We study the performance of the proposed local MPC via simulation on a simple 4 by 4 Manhattan grid, comparing its delay with an efficiently tuned pretimed control for the traffic lights, and with traffic lights controlled according to the max pressure rule. These simulations show that the proposed local MPC controller achieves a significant reduction in delay for various traffic conditions. 相似文献
2.
Lucas Barcelos de Oliveira Eduardo Camponogara 《Transportation Research Part C: Emerging Technologies》2010,18(1):120-139
The operation of large dynamic systems such as urban traffic networks remains a challenge in control engineering to a great extent due to their sheer size, intrinsic complexity, and nonlinear behavior. Recently, control engineers have looked for unconventional means for modeling and control of complex dynamic systems, in particular the technology of multi-agent systems whose appeal stems from their composite nature, flexibility, and scalability. This paper contributes to this evolving technology by proposing a framework for multi-agent control of linear dynamic systems, which decomposes a centralized model predictive control problem into a network of coupled, but small sub-problems that are solved by the distributed agents. Theoretical results ensure convergence of the distributed iterations to a globally optimal solution. The framework is applied to the signaling split control of traffic networks. Experiments conducted with simulation software indicate that the multi-agent framework attains performance comparable to conventional control. The main advantages of the multi-agent framework are its graceful extension and localized reconfiguration, which require adjustments only in the control strategies of the agents in the vicinity. 相似文献
3.
In this paper, a model predictive control approach for improving the efficiency of bicycling as part of intermodal transportation systems is proposed. Considering a dedicated bicycle lanes infrastructure, the focus in this paper is to optimize the dynamic interaction between bicycles and vehicles at the multimodal urban traffic intersections. In the proposed approach, a dynamic model for the flows, queues, and number of both vehicles and bicycles is explicitly incorporated in the controller. For obtaining a good trade-off between the total time spent by the cyclists and by the drivers, a Pareto analysis is proposed to adjust the objective function of the MPC controller. Simulation results for a two-intersections urban traffic network are presented and the controller is analyzed considering different methods of including in the MPC controller the inflow demands of both vehicles and bicycles. 相似文献
4.
A widespread deployment of vehicle automation and communication systems (VACS) is expected in the next years. This may lead to improvements in traffic management efficiency because of the novel possibilities of using VACS both as sensors and as actuators, as well as of a variety of new communications channels (vehicle-to-vehicles, vehicle-to-infrastructure) and related opportunities. To achieve this traffic flow efficiency, appropriate studies, developing potential control strategies to exploit the VACS availability, are essential. This paper describes a hierarchical model predictive control framework that can be used for the coordinated and integrated control of a motorway system, considering that an amount of vehicles are equipped with specific VACS. The concept employs and exploits the synergistic (integrated) action of a number of old and new control measures, including ramp metering, vehicle speed control, and lane changing control at a macroscopic level. The effectiveness and the computational feasibility of the proposed approach are demonstrated via microscopic simulation for a variety of penetration rates of equipped vehicles. 相似文献
5.
Every day small delays occur in almost all railway networks. Such small delays are often called “disturbances” in literature. In order to deal with disturbances dispatchers reschedule and reroute trains, or break connections. We call this the railway management problem. In this paper we describe how the railway management problem can be solved using centralized model predictive control (MPC) and we propose several distributed model predictive control (DMPC) methods to solve the railway management problem for entire (national) railway networks. Furthermore, we propose an optimization method to determine a good partitioning of the network in an arbitrary number of sub-networks that is used for the DMPC methods. The DMPC methods are extensively tested in a case study using a model of the Dutch railway network and the trains of the Nederlandse Spoorwegen. From the case study it is clear that the DMPC methods can solve the railway traffic management problem, with the same reduction in delays, much faster than the centralized MPC method. 相似文献
6.
A Model Predictive Control (MPC) strategy for motorway traffic management, which takes into account both conventional control measures and control actions executed by vehicles equipped with Vehicle Automation and Communication Systems (VACS), is presented and evaluated using microscopic traffic simulation. A stretch of the motorway A20, which connects Rotterdam to Gouda in the Netherlands, is taken as a realistic test bed. In order to ensure the reliability of the application results, extensive speed and flow measurements, collected from the field, are used to calibrate the site’s microscopic traffic simulation model. The efficiency of the MPC framework, applied to this real sizable and complex network under realistic traffic conditions, is examined for different traffic conditions and different penetration rates of equipped vehicles. The adequacy of the control application when only VACS equipped vehicles are used as actuators, is also considered, and the related findings underline the significance of conventional control measures during a transition period or in case of increased future demand. 相似文献
7.
This paper aims at examining the possibility of setting up a model terminal for the transportation of dangerous goods. It should be designed in such a manner that its use would be possible for any kind of transportation. This consideration has been prompted by the interface between transportation planning and technology, as well as by the tendency for harmonizing international recommendations pertaining to the transportation and handling of dangerous goods, especially during the last decades where unified transport has gained ground due to the advantages provided for the safe consignment of dangerous cargoes. Since the large increase in terminal productivity is due to the heavy investments that were effected in terminal installations and to the modernization of the administration‐management of terminals, a mathematical simulation has been adopted to assist the determination of the capacity of a terminal for dangerous goods. It is evident that different criteria and various assumptions have been taken into account in order to facilitate a deeper analysis, without ignoring the contribution of dangerous goods to the socio‐economic development. From the outset of the study, it was already clear that the said process will make it possible to present—as a model—a simple but well defined situation for the purpose of drawing useful conclusions. 相似文献
9.
Autonomous vehicles admit consideration of novel traffic behaviors such as reservation-based intersection controls and dynamic lane reversal. We present a cell transmission model formulation for dynamic lane reversal. For deterministic demand, we formulate the dynamic lane reversal control problem for a single link as an integer program and derive theoretical results. In reality, demand is not known perfectly at arbitrary times in the future. To address stochastic demand, we present a Markov decision process formulation. Due to the large state size, the Markov decision process is intractable. However, based on theoretical results from the integer program, we derive an effective heuristic. We demonstrate significant improvements over a fixed lane configuration both on a single bottleneck link with varying demands, and on the downtown Austin network. 相似文献
10.
This paper presents an optimisation framework for motorway management via ramp metering and variable speed limit. We start with presenting a centralised global optimal control problem aiming to minimise the total travel delay in a motorway system. Given the centralised global optimal control solutions, we propose a set of decentralised ramp metering and speed control strategies which operate on a novel parsimonious dynamic platform without needing an underlying traffic model. The control strategies are applied to a case on UK M25 motorway. The results show that the proposed set of decentralised control is able to deliver a performance that is close to the global optimal ones with significantly less computational and implementation effort. This study provides new insights to motorway management. 相似文献
11.
Autonomous vehicles have the potential to improve link and intersection traffic behavior. Computer reaction times may admit reduced following headways and increase capacity and backwards wave speed. The degree of these improvements will depend on the proportion of autonomous vehicles in the network. To model arbitrary shared road scenarios, we develop a multiclass cell transmission model that admits variations in capacity and backwards wave speed in response to class proportions within each cell. The multiclass cell transmission model is shown to be consistent with the hydrodynamic theory. This paper then develops a car following model incorporating driver reaction time to predict capacity and backwards wave speed for multiclass scenarios. For intersection modeling, we adapt the legacy early method for intelligent traffic management (Bento et al., 2013) to general simulation-based dynamic traffic assignment models. Empirical results on a city network show that intersection controls are a major bottleneck in the model, and that the legacy early method improves over traffic signals when the autonomous vehicle proportion is sufficiently high. 相似文献
12.
In an earlier work, Sun and Bayen built a Large-Capacity Cell Transmission Model for air traffic flow management. They formulated an integer programming problem of minimizing the total travel time of flights in the National Airspace System of the United States subject to sector capacity constraints. The integer program was relaxed to a linear program for computational efficiency. In this paper the authors formulate the optimization problem in a standard linear programming form. We analyze the total unimodular property of the constraint matrix, and prove that the linear programming relaxation generates an optimal integral solution for the original integer program. It is guaranteed to be optimal and integral if solved by a simplex related method. In order to speed up the computation, we apply the Dantzig–Wolfe Decomposition algorithm, which is shown to preserve the total unimodularity of the constraint matrix. Finally, we evaluate the performances of Sun and Bayen’s relaxation solved by the interior point method and our decomposition algorithm with large-scale air traffic data. 相似文献
13.
Traffic metering offers great potential to reduce congestion and enhance network performance in oversaturated urban street networks. This paper presents an optimization program for dynamic traffic metering in urban street networks based on the Cell Transmission Model (CTM). We have formulated the problem as a Mixed-Integer Linear Program (MILP) capable of metering traffic at network gates with given signal timing parameters at signalized intersections. Due to the complexities of the MILP model, we have developed a novel and efficient solution approach that solves the problem by converting the MILP to a linear program and several CTM simulation runs. The solution algorithm is applied to two case studies under different conditions. The proposed solution technique finds solutions that have a maximum gap of 1% of the true optimal solution and guarantee the maximum throughput by keeping some vehicles at network gates and only allowing enough vehicles to enter the network to prevent gridlocks. This is confirmed by comparing the case studies with and without traffic metering. The results in an adapted real-world case study network show that traffic metering can increase network throughput by 4.9–38.9% and enhance network performance. 相似文献
14.
Recently, the cooperative control of multiple vessels has been gaining increasing attention because of the potential robustness, reliability and efficiency of multi-agent systems. In this paper, we propose the concept of Cooperative Multi-Vessel Systems (CMVSs) consisting of multiple coordinated autonomous vessels. We in particular focus on the so-called Vessel Train Formation (VTF) problem. The VTF problem considers not only cooperative collision avoidance, but also grouping of vessels. An MPC-based approach is proposed for addressing the VTF problem. A centralized and a distributed formulation based on the Alternating Direction of Multipliers Method (ADMM) are investigated. The distributed formulation adopts a single-layer serial iterative architecture, which gains the benefits of reduced communication requirements and robustness against failures. The impacts of information updating sequences and responsibility parameters are discussed. We furthermore analyze the scalability of the proposed method. Simulation experiments of a CMVS navigating from different terminals in the Port of Rotterdam to inland waterways are carried out to illustrate the effectiveness of our method. The proposed method successfully steers the vessels from different origins to form a vessel train. Due to the effective communication, vessels can timely respond to the velocity changes that others make. After the formation is formed, the distances between vessels become constant. The results show the potential to use CMVSs for inland shipping with enhanced safety. 相似文献
15.
Anticipatory optimal network control can be defined as the practice of determining the set of control actions that minimizes a network-wide objective function, so that the consequences of this action are taken in consideration not only locally, on the propagation of flows, but globally, taking into account the user’s routing behavior. Such an objective function is, in general, defined and optimized in a centralized setting, as knowledge regarding the whole network is needed in order to correctly compute it. This is a strong theoretical framework but, in practice, reaching a level of centralization sufficient to achieve said optimality is very challenging. Furthermore, even if centralization was possible, it would exhibit several shortcomings, with concerns such as computational speed (centralized optimization of a huge control set with a highly nonlinear objective function), reliability and communication overhead arising.The main aim of this work is to develop a decomposed heuristic descent algorithm that, demanding the different control entities to share the same information set, attains network-wide optimality through separate control actions. 相似文献
17.
The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS. 相似文献
18.
19.
Advances in connected and automated vehicle technologies have resulted in new vehicle applications, such as cooperative adaptive cruise control (CACC). Microsimulation models have shown significant increases in capacity and stability due to CACC, but most previous work has relied on microsimulation. To study the effects of CACC on larger networks and with user equilibrium route choice, we incorporate CACC into the link transmission model (LTM) for dynamic network loading. First, we derive the flow-density relationship from the MIXIC car-following model of CACC (at 100% CACC market penetration). The flow-density relationship has an unusual shape; part of the congested regime has an infinite congested wave speed. However, we verify that the flow predictions match observations from MIXIC modeled in VISSIM. Then, we use the flow-density relationship from MIXIC in LTM. Although the independence of separate links restricts the maximum congested wave speed, for common freeway link lengths the congested wave speed is sufficiently high to fit the observed flows from MIXIC. Results on a freeway and regional networks (with CACC-exclusive lanes) indicate that CACC could reduce freeway congestion, but naïve deployment of CACC-exclusive lanes could cause an increase in total system travel time. 相似文献
20.
The purpose of our study is to develop a “corrected average emission model,” i.e., an improved average speed model that accurately calculates CO2 emissions on the road. When emissions from the central roads of a city are calculated, the existing average speed model only reflects the driving behavior of a vehicle that accelerates and decelerates due to signals and traffic. Therefore, we verified the accuracy of the average speed model, analyzed the causes of errors based on the instantaneous model utilizing second-by-second data from driving in a city center, and then developed a corrected model that can improve the accuracy. We collected GPS data from probe vehicles, and calculated and analyzed the average emissions and instantaneous emissions per link unit. Our results showed that the average speed model underestimated CO2 emissions with an increase in acceleration and idle time for a speed range of 20 km/h and below, which is the speed range for traffic congestion. Based on these results, we analyzed the relationship between average emissions and instantaneous emissions according to the average speed per link unit, and we developed a model that performed better with an improved accuracy of calculated CO2 emissions for 20 km/h and below. 相似文献