共查询到20条相似文献,搜索用时 0 毫秒
1.
The traffic-restraint congestion-pricing scheme (TRCPS) aims to maintain traffic flow within a desirable threshold for some target links by levying the appropriate link tolls. In this study, we propose a trial-and-error method using observed link flows to implement the TRCPS with the day-to-day flow dynamics. Without resorting to the origin–destination (O–D) demand functions, link travel time functions and value of time (VOT), the proposed trial-and-error method works as follows: tolls for the traffic-restraint links are first implemented each time (trial) and they are subsequently updated using observed link flows in a disequilibrium state at any arbitrary time interval. The trial-and-error method has the practical significance because it is necessary only to observe traffic flows on those tolled links and it does not require to wait for the network flow pattern achieving the user equilibrium (UE) state. The global convergence of the trial-and-error method is rigorously demonstrated under mild conditions. We theoretically show the viability of the proposed trial-and-error method, and numerical experiments are conducted to evaluate its performance. The result of this study, without doubt, enhances the confidence of practitioners to adopt this method. 相似文献
2.
Transportation networks are often subjected to perturbed conditions leading to traffic disequilibrium. Under such conditions, the traffic evolution is typically modeled as a dynamical system that captures the aggregated effect of paths-shifts by drivers over time. This paper proposes a day-to-day (DTD) dynamical model that bridges two important gaps in the literature. First, existing DTD models generally consider current path flows and costs, but do not factor the sensitivity of path costs to flow. The proposed DTD model simultaneously captures all three factors in modeling the flow shift by drivers. As a driver can potentially perceive the sensitivity of path costs with the congestion level based on past experience, incorporating this factor can enhance real-world consistency. In addition, it smoothens the time trajectory of path flows, a desirable property for practice where the iterative solution procedure is typically terminated at an arbitrary point due to computational time constraints. Second, the study provides a criterion to classify paths for an origin–destination pair into two subsets under traffic disequilibrium: expensive paths and attractive paths. This facilitates flow shifts from the set of expensive paths to the set of attractive paths, enabling a higher degree of freedom in modeling flow shift compared to that of shifting flows only to the shortest path, which is behaviorally restrictive. In addition, consistent with the real-world driver behavior, it also helps to preclude flow shifts among expensive paths. Improved behavioral consistency can lead to more meaningful path/link time-dependent flow profiles for developing effective dynamic traffic management strategies for practice. The proposed DTD model is formulated as the dynamical system by drawing insights from micro-economic theory. The stability of the model and existence of its stationary point are theoretically proven. Results from computational experiments validate its modeling properties and illustrate its benefits relative to existing DTD dynamical models. 相似文献
3.
This paper investigates evolutionary implementation of congestion pricing schemes to minimize the system cost and time, measured in monetary and time units, respectively, with the travelers’ day-to-day route adjustment behavior and their heterogeneity. The travelers’ heterogeneity is captured by their value-of-times. First, the multi-class flow dynamical system is proposed to model the travelers’ route adjustment behavior in a tolled transportation network with multiple user classes. Then, the stability condition and properties of equilibrium is examined. We further investigate the trajectory control problem via dynamic congestion pricing scheme to derive the system cost, time optimum, and generally, Pareto optimum in the sense of simultaneous minimization of system cost and time. The trajectory control problem is modeled by a differential–algebraic system with the differential sub-system capturing the flow dynamics and the algebraic one capturing the pricing constraint. The explicit Runge–Kutta method is proposed to calculate the dynamic flow trajectories and anonymous link tolls. The method allows the link tolls to be updated with any predetermined periods and forces the system cost and/or time to approach the optimum levels. Both analytical and numerical examples are adopted to examine the efficiency of the method. 相似文献
4.
This paper investigates the convergence of the trial-and-error procedure to achieve the system optimum by incorporating the day-to-day evolution of traffic flows. The path flows are assumed to follow an ‘excess travel cost dynamics’ and evolve from disequilibrium states to the equilibrium day by day. This implies that the observed link flow pattern during the trial-and-error procedure is in disequilibrium. By making certain assumptions on the flow evolution dynamics, we prove that the trial-and-error procedure is capable of learning the system optimum link tolls without requiring explicit knowledge of the demand functions and flow evolution mechanism. A methodology is developed for updating the toll charges and choosing the inter-trial periods to ensure convergence of the iterative approach towards the system optimum. Numerical examples are given in support of the theoretical findings. 相似文献
5.
A general dynamical system model with link-based variables is formulated to characterize the processes of achieving equilibria from a non-equilibrium state in traffic networks. Several desirable properties of the dynamical system model are established, including the equivalence between its stationary state and user equilibrium, the invariance of its evolutionary trajectories, and the uniqueness and stability of its stationary points. Moreover, it is shown that not only a link-based version of two existing day-to-day traffic dynamics models but also two existing link-based dynamical system models of traffic flow are the special cases of the proposed model. The stabilities of stationary states of these special cases are also analyzed and discussed. In addition, an extension is made to the case with elastic demand. The study is helpful for better understanding the day-to-day adjustment mechanism of traffic flows in networks. 相似文献
6.
This contribution puts forward a novel multi-class continuum model that captures some of the key dynamic features of pedestrian flows. It considers route choice behaviour on both the strategic (pre-trip) and tactical (en-route) level. To achieve this, we put forward a class-specific equilibrium direction relation of the pedestrians, which is governed by two parts: one part describing the global route choice, which is pre-determined based on the expectations of the pedestrians, and one part describing the local route choice, which is a density-gradient dependent term that reflects local adaptations based on prevailing flow conditions.Including the local route choice term in the multi-class model causes first of all dispersion of the flow: pedestrians will move away from high density areas in order to reduce their overall walking costs. Second of all, for the crossing flow and bi-directional flow cases, local route choice causes well known self-organised patterns to emerge (i.e. diagonal stripes and bi-directional lanes). We study under which demand conditions self-organisation occurs and fails, as well as what the impact is of the choices of the different model parameters. In particular, the differences in the weights reflecting the impact of the own and the other classes appear to have a very strong impact on the self-organisation process. 相似文献
7.
David Watling David MilneStephen Clark 《Transportation Research Part A: Policy and Practice》2012,46(1):167-189
In spite of their widespread use in policy design and evaluation, relatively little evidence has been reported on how well traffic equilibrium models predict real network impacts. Here we present what we believe to be the first paper that together analyses the explicit impacts on observed route choice of an actual network intervention and compares this with the before-and-after predictions of a network equilibrium model. The analysis is based on the findings of an empirical study of the travel time and route choice impacts of a road capacity reduction. Time-stamped, partial licence plates were recorded across a series of locations, over a period of days both with and without the capacity reduction, and the data were ‘matched’ between locations using special-purpose statistical methods. Hypothesis tests were used to identify statistically significant changes in travel times and route choice, between the periods of days with and without the capacity reduction. A traffic network equilibrium model was then independently applied to the same scenarios, and its predictions compared with the empirical findings. From a comparison of route choice patterns, a particularly influential spatial effect was revealed of the parameter specifying the relative values of distance and travel time assumed in the generalised cost equations. When this parameter was ‘fitted’ to the data without the capacity reduction, the network model broadly predicted the route choice impacts of the capacity reduction, but with other values it was seen to perform poorly. The paper concludes by discussing the wider practical and research implications of the study’s findings. 相似文献
8.
This paper presents a comprehensive econometric modelling framework for daily activity program generation. It is for day-specific
activity program generations of a week-long time span. Activity types considered are 15 generic categories of non-skeletal
and flexible activities. Under the daily time budget and non-negativity of participation rate constraints, the models predict
optimal sets of frequencies of the activities under consideration (given the average duration of each activity type). The
daily time budget considers at-home basic needs and night sleep activities together as a composite activity. The concept of
composite activity ensures the dynamics and continuity of time allocation and activity/travel behaviour by encapsulating altogether
the activity types that are not of our direct interest in travel demand modelling. Workers’ total working hours (skeletal
activity and not a part of the non-skeletal activity time budget) are considered as a variable in the models to accommodate
the scheduling effects inside the generation model of non-skeletal activities. Incorporation of previous day’s total executed
activities as variables introduces day-to-day dynamics into the activity program generation models. The possibility of zero
frequency of any specific activity under consideration is ensured by the Kuhn-Tucker optimality conditions used for formulating
the model structure. Models use the concept of random utility maximization approach to derive activity program set. Estimations
of the empirical models are done using the 2002–2003 CHASE survey data set collected in Toronto.
相似文献
Eric J. MillerEmail: |
9.
Xiaolei Guo 《Transportation Research Part B: Methodological》2011,45(10):1606-1618
A network change is said to be irreversible if the initial network equilibrium cannot be restored by revoking the change. The phenomenon of irreversible network change has been observed in reality. To model this phenomenon, we develop a day-to-day dynamic model whose fixed point is a boundedly rational user equilibrium (BRUE) flow. Our BRUE based approach to modeling irreversible network change has two advantages over other methods based on Wardrop user equilibrium (UE) or stochastic user equilibrium (SUE). First, the existence of multiple network equilibria is necessary for modeling irreversible network change. Unlike UE or SUE, the BRUE multiple equilibria do not rely on non-separable link cost functions, which makes our model applicable to real-world large-scale networks, where well-calibrated non-separable link cost functions are generally not available. Second, travelers’ boundedly rational behavior in route choice is explicitly considered in our model. The proposed model is applied to the Twin Cities network to model the flow evolution during the collapse and reopening of the I-35 W Bridge. The results show that our model can to a reasonable level reproduce the observed phenomenon of irreversible network change. 相似文献
10.
In this paper, we perform a rigorous analysis on a link-based day-to-day traffic assignment model recently proposed in He et al. (2010). Several properties, including the invariance set and the constrained stability, of this dynamical process are established. An extension of the model to the asymmetric case is investigated and the stability result is also established under slightly more restrictive assumptions. Numerical experiments are conducted to demonstrate the findings. 相似文献
11.
This study models the joint evolution (over calendar time) of travelers’ departure time and mode choices, and the resulting traffic dynamics in a bi-modal transportation system. Specifically, we consider that, when adjusting their departure time and mode choices, travelers can learn from their past travel experiences as well as the traffic forecasts offered by the smart transport information provider/agency. At the same time, the transport agency can learn from historical data in updating traffic forecast from day to day. In other words, this study explicitly models and analyzes the dynamic interactions between transport users and traffic information provider. Besides, the impact of user inertia is taken into account in modeling the traffic dynamics. When exploring the convergence of the proposed model to the dynamic bi-modal commuting equilibrium, we find that appropriate traffic forecast can help the system converge to the user equilibrium. It is also found that user inertia might slow down the convergence speed of the day-to-day evolution model. Extensive sensitivity analysis is conducted to account for the impacts of inaccurate parameters adopted by the transport agency. 相似文献
12.
Peter Bonsall 《Transportation》1992,19(1):1-23
The paper begins by reviewing what is known about route choice processes and notes the mismatch between this knowledge and the route choice assumptions embedded in the most widely used assignment models. Empirical evidence on the influence of route guidance advice on route choice is reviewed and, despite its limited nature, is seen to suggest that users are reluctant to follow advice unless they find it convincing and that, the more familiar they are with the network, the less likely they are to accept advice. Typically only a small minority of journeys are made in total compliance with advice.Results from an interactive route choice simulator (IGOR) are summarised and are seen to reveal that compliance depends on the extent to which the advice is corroborated by other factors, on the drivers' familiarity with the network and on the quality of advice previously received. It is noted that the IGOR results are in a form which would enable response models to be calibrated.Recent approaches to the modelling of route choice in the context of guidance are discussed. Some are seen to make simplifying assumptions which must limit the relevance of their results; most make no allowance for the fact that drivers are unlikely to comply with all advice and several are not able to represent the benefits which guidance might bring in the context of sporadic congestion or incidents.As an alternative, a two phase model comprising a medium term strategic equilibrium and a day-specific simulation with explicit representation of driver response is proposed.Updated and extended from an earlier version published in theProceedings of the Japan Society of Civil Engineers (JSCE No 425/IV-4, 1991-1). 相似文献
13.
Influences on bicycle use 总被引:2,自引:0,他引:2
A stated preference experiment was performed in Edmonton in Canada to both examine the nature of various influences on bicycle
use and obtain ratios among parameter values to be used in the development of a larger simulation of household travel behaviour.
A total of 1128 questionnaires were completed and returned by current cyclists. Each questionnaire presented a pair of possible
bicycle use alternatives and asked which was preferred for travel to a hypothetical all-day meeting or gathering (business
or social). Alternatives were described by specifying the amounts of time spent on three different types of cycling facility
and whether or not showers and/or secure bicycle parking were available at the destination. Indications of socio-economic
character and levels of experience and comfort regarding cycling were also collected. The observations thus obtained were
used to estimate the parameter values for a range of different utility functions in logit models representing this choice
behaviour. The results indicate, among other things, that time spent cycling in mixed traffic is more onerous than time spent
cycling on bike lanes or bike paths; that secure parking is more important than showers at the destination; and that cycling
times on roadways tend to become less onerous as level of experience increases. Some of these results are novel and others
are consistent with findings regarding bicycle use in work done by others, which is seen to add credence to this work. A review
of previous findings concerning influences on cycling behaviour is also included. 相似文献
14.
This paper investigates the nonlinear distance-based congestion pricing in a network considering stochastic day-to-day dynamics. After an implementation/adjustment of a congestion pricing scheme, the network flows in a certain period of days are not on an equilibrium state, thus it is problematic to take the equilibrium-based indexes as the pricing objective. Therefore, the concept of robust optimization is taken for the congestion toll determination problem, which takes into account the network performance of each day. First, a minimax model which minimizes the maximum regret on each day is proposed. Taking as a constraint of the minimax model, a path-based day to day dynamics model under stochastic user equilibrium (SUE) constraints is discussed in this paper. It is difficult to solve this minimax model by exact algorithms because of the implicity of the flow map function. Hence, a two-phase artificial bee colony algorithm is developed to solve the proposed minimax regret model, of which the first phase solves the minimal expected total travel cost for each day and the second phase handles the minimax robust optimization problem. Finally, a numerical example is conducted to validate the proposed models and methods. 相似文献
15.
Alexander Paz Srinivas Peeta 《Transportation Research Part C: Emerging Technologies》2009,17(6):642-661
The problem addressed here involves a controller seeking to enhance traffic network performance via real-time routing information provision to drivers while explicitly accounting for drivers’ likely reactions towards the information. A fuzzy control modeling approach is used to determine the associated behavior-consistent information-based network control strategies. Experiments are performed to compare the effectiveness of the behavior-consistent approach with traditional dynamic traffic assignment based approaches for deployment. The results show the importance of incorporating driver behavior realistically in the determination of the information strategies. Significant differences in terms of system travel time savings and compliance to the information strategies can be obtained when the behavior-consistent approach is compared to the traditional approaches. The behavior-consistent approach can provide more robust performance compared to the standard user or system optimal information strategies. Subject to a meaningful estimation of driver behavior, it can ensure system performance improvement. By contrast, approaches that do not seek to simultaneously achieve the objectives of the drivers and the controller can potentially deteriorate system performance because the controller may over-recommend or under-recommend some routes, or recommend routes that are not considered by the drivers. 相似文献
16.
This paper presents the results of a major before-and-after study carried out to establish the short term effects of the removal of a severe bottleneck in the road network around Amsterdam. An important focus in the study was on measuring changes in the timing of travel, as well as changes in route choice, mode choice, destination choice and frequency of travel. The results of the study indicated that, in the short run, there was little or no change in mode choice, nor was there significant emergence of new induced trips. On the other hand, large shifts in time of travel as well as route choice were reported, emphasising the importance of alterations to the timing and routes of existing trips when congestion is relieved, and the need to consider the benefits these bring in evaluating the impact of any road investment. 相似文献
17.
Concerned by the nuisances of motorized travel on urban life, policy makers are faced with the challenge of making cycling a more attractive alternative for everyday transportation. Route choice models can help achieve this objective by gaining insights into the trade-offs cyclists make when choosing their routes and by allowing the effect of infrastructure improvements to be analyzed. We estimate a link-based bike route choice model from a sample of GPS observations in the city of Eugene on a network comprising over 40,000 links. The so-called recursive logit (RL) model (Fosgerau et al., 2013) does not require to sample any choice set of paths. We show the advantages of this approach in the context of prediction by focusing on two applications of the model: link flows and accessibility measures. Compared to the path-based approach which requires to generate choice sets, the RL model proves to make significant gains in computational time and to avoid paradoxical accessibility measure results discussed in previous works, e.g. Nassir et al. (2014). 相似文献
18.
M Wardman P.W Bonsall J.D Shires 《Transportation Research Part C: Emerging Technologies》1997,5(6):262
This paper uses a Stated Preference approach to undertake a detailed assessment of the effect on drivers’ route choice of information provided by variable message signs (VMS). Although drivers’ response to VMS information will vary according to the availability of alternative routes and the extent to which they are close substitutes, our findings show that route choice can be strongly influenced by the provision of information about traffic conditions ahead. This has important implications for the use of VMS systems as part of comprehensive traffic management and control systems. The principal findings are that the impact of VMS information depends on: the content of the message, such as the cause of delay and its extent; local circumstances, such as relative journey times in normal conditions; and drivers’ characteristics, such as their age, sex and previous network knowledge. The impact of qualitative indicators, visible queues and delays were examined. It was found that not only is delay time more highly valued than normal travel time, which is to be expected, but that drivers become more sensitive to delay time as delay times increased across the range presented. 相似文献
19.
G. Bouladon 《运输规划与技术》2013,36(1):3-9
More than 200 new systems of transport have been proposed as solutions to problems of urban congestion. However, very few of these have reached even the prototype stage and practically none at all have ever actually been installed. The author asks himself why this is so. If an invention is to be introduced into a field which is poorly receptive to innovation, it must not only bring something really new and attractive for the users on the functional level as opposed merely to the technological level, but must also consider the political, industrial, social and human context. The author gives two examples of innovation conceived and developed at the Battelle Geneva Research Centre: one for private transport, a new system for an electric car which will include the interests of the petrol industry, and the other for public transport, the “Speedaway” sponsored by Dunlop Limited. These two systems will be put on the market shortly and will attempt to fulfill the criteria mentioned above. 相似文献
20.
This paper seeks to determine the effects of uncertainty in out-of-vehicle times on route choice. Data were collected at two key interchanges in Auckland, New Zealand. Previous work modelled the data using a manual approach to fuzzy logic. This study extends that work by automating the process through defining a black-box function to match the survey data, then employing a genetic algorithm to fine-tune the fuzzy logic model. Results show that automation and the genetic algorithm improve the model’s capability to more accurately predict ridership. The tuning of the membership functions is conducted twice, first using initial fuzzy rules and again after the fuzzy rules have been adjusted to reduce disparity between the output and survey data. The calibrated membership functions provided for operational (transfer waiting and walking time and delay) and physical attributes (safety and seat availability) can be used by practitioners to determine an estimated ridership. 相似文献