首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper offers a new look at the network flow dynamics from the viewpoint of physics by demonstrating that the traffic system, in terms of the aggregate effects of human behaviors, may exhibit like a physical system. Specifically, we look into the day-to-day evolution of network flows that arises from travelers’ route choices and their learning behavior on perceived travel costs. We show that the flow dynamics is analogous to a damped oscillatory system. The concepts of energies are introduced, including the potential energy and the kinetic energy. The potential energy, stored in each link, increases with the traffic flow on that link; the kinetic energy, generated by travelers’ day-to-day route swapping, is proportional to the square of the path flow changing speed. The potential and kinetic energies are converted to each other throughout the whole flow evolution, and the total system energy keeps decreasing owing to travelers’ tendency to stay on their current routes, which is analogous to the damping of a physical system. Finally, the system will approach the equilibrium state with minimum total potential energy and zero kinetic energy. We prove the stability of the day-to-day dynamics and provide numerical experiments to elucidate the interesting findings.  相似文献   

2.
Transportation networks are often subjected to perturbed conditions leading to traffic disequilibrium. Under such conditions, the traffic evolution is typically modeled as a dynamical system that captures the aggregated effect of paths-shifts by drivers over time. This paper proposes a day-to-day (DTD) dynamical model that bridges two important gaps in the literature. First, existing DTD models generally consider current path flows and costs, but do not factor the sensitivity of path costs to flow. The proposed DTD model simultaneously captures all three factors in modeling the flow shift by drivers. As a driver can potentially perceive the sensitivity of path costs with the congestion level based on past experience, incorporating this factor can enhance real-world consistency. In addition, it smoothens the time trajectory of path flows, a desirable property for practice where the iterative solution procedure is typically terminated at an arbitrary point due to computational time constraints. Second, the study provides a criterion to classify paths for an origin–destination pair into two subsets under traffic disequilibrium: expensive paths and attractive paths. This facilitates flow shifts from the set of expensive paths to the set of attractive paths, enabling a higher degree of freedom in modeling flow shift compared to that of shifting flows only to the shortest path, which is behaviorally restrictive. In addition, consistent with the real-world driver behavior, it also helps to preclude flow shifts among expensive paths. Improved behavioral consistency can lead to more meaningful path/link time-dependent flow profiles for developing effective dynamic traffic management strategies for practice. The proposed DTD model is formulated as the dynamical system by drawing insights from micro-economic theory. The stability of the model and existence of its stationary point are theoretically proven. Results from computational experiments validate its modeling properties and illustrate its benefits relative to existing DTD dynamical models.  相似文献   

3.
Through relaxing the behavior assumption adopted in Smith’s model (Smith, 1984), we propose a discrete dynamical system to formulate the day-to-day evolution process of traffic flows from a non-equilibrium state to an equilibrium state. Depending on certain preconditions, the equilibrium state can be equivalent to a Wardrop user equilibrium (UE), Logit-based stochastic user equilibrium (SUE), or boundedly rational user equilibrium (BRUE). These equivalence properties indicate that, to make day-to-day flows evolve to equilibrium flows, it is not necessary for travelers to choose their routes based on actual travel costs of the previous day. Day-to-day flows can still evolve to equilibrium flows provided that travelers choose their routes based on estimated travel costs which satisfy these preconditions. We also show that, under a more general assumption than the monotonicity of route cost function, the trajectory of the dynamical system converges to a set of equilibrium flows by reasonably setting these parameters in the dynamical system. Finally, numerical examples are presented to demonstrate the application and properties of the dynamical system. The study is helpful for understanding various processes of forming traffic jam and designing an algorithm for calculating equilibrium flows.  相似文献   

4.
This paper investigates the convergence of the trial-and-error procedure to achieve the system optimum by incorporating the day-to-day evolution of traffic flows. The path flows are assumed to follow an ‘excess travel cost dynamics’ and evolve from disequilibrium states to the equilibrium day by day. This implies that the observed link flow pattern during the trial-and-error procedure is in disequilibrium. By making certain assumptions on the flow evolution dynamics, we prove that the trial-and-error procedure is capable of learning the system optimum link tolls without requiring explicit knowledge of the demand functions and flow evolution mechanism. A methodology is developed for updating the toll charges and choosing the inter-trial periods to ensure convergence of the iterative approach towards the system optimum. Numerical examples are given in support of the theoretical findings.  相似文献   

5.
In this article a doubly dynamis assignment model for a general network is presented. It is assumed that users' choices are based on information about travel times and generalized transportation costs occurred in a finite number of previous days and, possibly, in previous periods of the same day. The information may be supplied and managed by an informative system. In this context, path and link flows vary for different subperiods of the same day (within-day dynamics) and for different days (day-to-day dynamics). The proposed model follows a nonequilibrium approach in which both within-day and day-to-day flow fluctuations are modelled as a stochastic process. A model of dynamic network loading for computing within-day variable arc flows from path flows is also presented. The model deals explicitly with queuing at oversaturated intersections and can be formulated as a fixed point problem. A solution scheme for the doubly dynamic assignment model is presented embedding a solution algorithm for the fixed-point problem.  相似文献   

6.
There is significant current interest in the development of models to describe the day-to-day evolution of traffic flows over a network. We consider the problem of statistical inference for such models based on daily observations of traffic counts on a subset of network links. Like other inference problems for network-based models, the critical difficulty lies in the underdetermined nature of the linear system of equations that relates link flows to the latent path flows. In particular, Bayesian inference implemented using Markov chain Monte Carlo methods requires that we sample from the set of route flows consistent with the observed link flows, but enumeration of this set is usually computationally infeasible.We show how two existing conditional route flow samplers can be adapted and extended for use with day-to-day dynamic traffic. The first sampler employs an iterative route-by-route acceptance–rejection algorithm for path flows, while the second employs a simple Markov model for traveller behaviour to generate candidate entire route flow patterns when the network has a tree structure. We illustrate the application of these methods for estimation of parameters that describe traveller behaviour based on daily link count data alone.  相似文献   

7.
Using multi-day, multi-period travel diaries data of 56 days (four waves of two-week diaries) for 67 individuals in Stockholm, this study aims to examine the effects of out-of-home and in-home constraints (e.g. teleworking, studying at home, doing the laundry, cleaning and taking care of other household member[s]) on individuals’ day-to-day leisure activity participation decisions in four different seasons. This study also aims to explore the effects of various types of working schedules (fixed, shift, partial- and full-flexible) on individuals’ decisions to participate in day-to-day leisure activities. A pooled model (56 days) and wave-specific models (14 days in each wave) are estimated by using dynamic ordered Probit models. The effects of various types of working schedules are estimated by using 28 days of two waves’ data. The results show that an individual’s leisure activity participation decision is significantly influenced by out-of-home work durations but not influenced by in-home constraints, regardless of any seasons. Individuals with shift working hours engage less in day-to-day leisure activities than other workers’ types in both spring and summer seasons. The thermal indicator significantly affects individuals’ leisure activity participation decisions during the autumn season. Individuals exhibit routine behaviour characterized by repeated decisions in participating in day-to-day leisure activities that can last up to 14 days, regardless of any seasons.  相似文献   

8.
This paper presents a learning-based model of route-choice behavior when information is provided in real time. In a laboratory controlled experiment, participants made a long series of binary route-choice trials relying on real-time information and learning from their personal experience reinforced through feedback. A discrete choice model with a Mixed Logit specification, accounting for panel effects, was estimated based on the experiment’s data. It was found that information and experience have a combined effect on drivers’ route-choice behavior. Informed participants had faster learning rates and tended to base their decisions on memorization relating to previous outcomes whereas non-informed participants were slower in learning, required more exploration and tended to rely mostly on recent outcomes. Informed participants were more prone to risk-seeking and had greater sensitivity to travel time variability. In comparison, non-informed participants appeared to be more risk-averse and less sensitive to variability. These results have important policy implications on the design and implementation of ATIS initiatives. The advantage of incorporating insights from Prospect Theory and reinforced learning to improve the realism of travel behavior models is also discussed.  相似文献   

9.
Perfect rationality (PR) has been widely used in modeling travel behavior. As opposed to PR, bounded rationality (BR) has recently regained researchers’ attention since it was first introduced into transportation science in the 1980s due to its power in more realistic travel behavior modeling and prediction. This paper provides a comprehensive survey on the models of BR route choice behavior, aiming to identify current research gaps and provide directions for future research. Despite a small but growing body of studies on employing bounded rationality principle, BR route choice behavior remains understudied due to the following reasons: (a) The existence of BR thresholds leads to mathematically intractable properties of equilibria; (b) BR parameters are usually latent and difficult to identify and estimate; and (c) BR is associated with human being’s cognitive process and is challenging to model. Accordingly, we will review how existing literature addresses the aforementioned challenges in substantive and procedural bounded rationality models. Substantive bounded rationality models focus on choice outcomes while procedural bounded rationality models focus on the empirical studies of choice processes. Bounded rationality models in each category can be further divided based on whether time dimension is included. Accordingly, static and dynamic traffic assignment are introduced in substantive bounded rationality while two-stage cognitive models and day-to-day learning models in procedural bounded rationality are discussed. The methodologies employed in substantive bounded rationality include game theory and interactive congestion game, while those in procedural bounded rationality mainly adopt random utility and non- or semi-compensatory models. A comparison of all existing methodologies are given and bounded rationality models’ scope and boundaries in terms of predictability, transferability, tractability, and scalability are discussed. Finally existing research gaps are presented and several promising future research directions are given.  相似文献   

10.
Traffic evacuation is a critical task in disaster management. Planning its evacuation in advance requires taking many factors into consideration such as the destination shelter locations and numbers, the number of vehicles to clear, the traffic congestions as well as traffic road configurations. A traffic evacuation simulation tool can provide the emergency managers with the flexibility of exploring various scenarios for identifying more accurate model to plan their evacuation. This paper presents a traffic evacuation simulation system based on integrated multi-level driving-decision models which generate agents’ behavior in a unified framework. In this framework, each agent undergoes a Strategic, Cognitive, Tactical and Operational (SCTO) decision process, in order to make a driving decision. An agent’s actions are determined by a combination, on each process level, of various existing behavior models widely used in different driving simulation models. A wide spectrum of variability in each agent’s decision and driving behaviors, such as in pre-evacuation activities, in choice of route, and in the following or overtaking the car ahead, are represented in the SCTO decision process models to simulate various scenarios. We present the formal model for the agent and the multi-level decision models. A prototype simulation system that reflects the multi-level driving-decision process modeling is developed and implemented. Our SCTO framework is validated by comparing with MATSim tool, and the experimental results of evacuation simulation models are compared with the existing evacuation plan for densely populated Beijing, China in terms of various performance metrics. Our simulation system shows promising results to support emergency managers in designing and evaluating more realistic traffic evacuation plans with multi-level agent’s decision models that reflect different levels of individual variability of handling stress situations. The flexible combination of existing behavior and decision models can help generating the best evacuation plan to manage each crisis with unique characteristics, rather than resorting to a fixed evacuation plan.  相似文献   

11.
Most deterministic day-to-day traffic evolution models, either in continuous-time or discrete-time space, have been formulated based on a fundamental assumption on driver route choice rationality where a driver seeks to maximize her/his marginal benefit defined as the difference between the perceived route costs. The notion of rationality entails the exploration of the marginal decision rule from economic theory, which states that a rational individual evaluates his/her marginal utility, defined as the difference between the marginal benefit and the marginal cost, of each incremental decision. Seeking to analyze the marginal decision rule in the modeling of deterministic day-to-day traffic evolution, this paper proposes a modeling framework which introduces a term to capture the marginal cost to the driver induced by route switching. The proposed framework enables to capture both benefit and cost associated with route changes. The marginal cost is then formulated upon the assumption that drivers are able to predict other drivers’ responses to the current traffic conditions, which is adopted based on the notion of strategic thinking of rational players developed in behavior game theory. The marginal cost based on 1-step strategic thinking also describes the “shadow price” of shifting routes, which helps to explain the behavioral tendency of the driver perceiving the cost-sensitivity to link/route flows. After developing a formulation of the marginal utility day-to-day model, its theoretical properties are analyzed, including the invariance property, asymptotic stability, and relationship with the rational behavioral adjustment process.  相似文献   

12.
This study investigates a travelers’ day-to-day route flow evolution process under a predefined market penetration of advanced traveler information system (ATIS). It is assumed that some travelers equipped with ATIS will follow the deterministic user equilibrium route choice behavior due to the complete traffic information provided by ATIS, while the other travelers unequipped with ATIS will follow the stochastic user equilibrium route choice behavior. The interaction between these two groups of travelers will result in a mixed equilibrium state. We first propose a discrete day-to-day route flow adjustment process for this mixed equilibrium behavior by specifying the travelers’ route adjustment principle and adjustment ratio. The convergence of the proposed day-to-day flow dynamic model to the mixed equilibrium state is then rigorously demonstrated under certain assumptions upon route adjustment principle and adjustment ratio. In addition, without affecting the convergence of the proposed day-to-day flow dynamic model, the assumption concerning the adjustment ratio is further relaxed, thus making the proposed model more appealing in practice. Finally, numerical experiments are conducted to illustrate and evaluate the performance of the proposed day-to-day flow dynamic model.  相似文献   

13.
The assessment of uninterrupted traffic flow is traditionally based on empirical methods. We develop some analytic queueing models based on traffic counts and we model the behavior of traffic flows as a function of some of the most relevant determinants. These analytic models allow for parameterized experiments, which pave the way towards our research objectives: assessing what-if scenario’s and sensitivity analysis for traffic management, congestion control, traffic design and the environmental impact of road traffic (e.g. emission models). The impact of some crucial modeling parameters is studied in detail and links with the broader research objectives are given. We illustrate our results for a highway, based on counted traffic flows in Flanders.  相似文献   

14.
Frequency-domain analysis has been successfully used to (i) predict the amplification of traffic oscillations along a platoon of vehicles with nonlinear car-following laws and (ii) measure traffic oscillation properties (e.g., periodicity, magnitude) from field data. This paper proposes a new method to calibrate nonlinear car-following laws based on real-world vehicle trajectories, such that oscillation prediction (based on the calibrated car-following laws) and measurement from the same data can be compared and validated. This calibration method, for the first time, takes into account not only the driver’s car-following behavior but also the vehicle trajectory’s time-domain (e.g., location, speed) and frequency-domain properties (e.g., peak oscillation amplitude). We use Newell’s car-following model (1961) as an example and calibrate its parameters based on a penalty-based maximum likelihood estimation procedure. A series of experiments using Next Generation Simulation (NGSIM) data are conducted to illustrate the applicability and performance of the proposed approach. Results show that the calibrated car-following models are able to simultaneously reproduce observed driver behavior, time-domain trajectories, and oscillation propagation along the platoon with reasonable accuracy.  相似文献   

15.
This paper deals with route choice models capturing travelers’ strategic behavior when adapting to revealed traffic conditions en route in a stochastic network. The strategic adaptive behavior is conceptualized as a routing policy, defined as a decision rule that maps from all possible revealed traffic conditions to the choices of next link out of decision nodes, given information access assumptions. In this paper, we use a specialized example where a variable message sign provides information about congestion status on outgoing links. We view the problem as choice under risk and present a routing policy choice model based on the cumulative prospect theory (CPT), where utility functions are nonlinear in probabilities and thus flexible attitudes toward risk can be captured.In order to illustrate the differences between routing policy and non-adaptive path choice models as well as differences between models based on expected utility (EU) theory and CPT, we estimate models based on synthetic data and compare them in terms of prediction results. There are large differences in path share predictions and the results demonstrate the flexibility of the CPT model to represent varying degrees of risk aversion and risk seeking depending on the outcome probabilities.  相似文献   

16.
This paper studies a mean-standard deviation shortest path model, also called travel time budget (TTB) model. A route’s TTB is defined as this route’s mean travel time plus a travel time margin, which is the route travel time’s standard deviation multiplied with a factor. The TTB model violates the Bellman’s Principle of Optimality (BPO), making it difficult to solve it in any large stochastic and time-dependent network. Moreover, it is found that if path travel time distributions are skewed, the conventional TTB model cannot reflect travelers’ heterogeneous risk-taking behavior in route choice. This paper proposes to use the upper or lower semi-standard deviation to replace the standard deviation in the conventional TTB model (the new models are called derived TTB models), because these derived TTB models can well capture such heterogeneous risk-taking behavior when the path travel time distributions are skewed. More importantly, this paper shows that the optimal solutions of these two derived TTB models must be non-dominated paths under some specific stochastic dominance (SD) rules. These finding opens the door to solve these derived TTB models efficiently in large stochastic and time-dependent networks. Numerical examples are presented to illustrate these findings.  相似文献   

17.
18.
Boundedly rational user equilibria (BRUE) represent traffic flow distribution patterns where travellers can take any route whose travel cost is within an ‘indifference band’ of the shortest path cost. Those traffic flow patterns satisfying the above condition constitute a set, named the BRUE solution set. It is important to obtain all the BRUE flow patterns, because it can help predict the variation of the link flow pattern in a traffic network under the boundedly rational behavior assumption. However, the methodology of constructing the BRUE set has been lacking in the established literature. This paper fills the gap by constructing the BRUE solution set on traffic networks with fixed demands. After defining ε-BRUE, where ε is the indifference band for the perceived travel cost, we formulate the ε-BRUE problem as a nonlinear complementarity problem (NCP), so that a BRUE solution can be obtained by solving a BRUE–NCP formulation. To obtain the BRUE solution set encompassing all BRUE flow patterns, we propose a methodology of generating acceptable path set which may be utilized under the boundedly rational behavior assumption. We show that with the increase of the indifference band, the acceptable path set that contains boundedly rational equilibrium flows will be augmented, and the critical values of indifference band to augment these path sets can be identified by solving a family of mathematical programs with equilibrium constraints (MPEC) sequentially. The BRUE solution set can then be obtained by assigning all traffic demands to the acceptable path set. Various numerical examples are given to illustrate our findings.  相似文献   

19.
The use of GPS devices and smartphones has made feasible the collection of multi-day activity-travel diaries. In turn, the availability of multi-day travel diary data opens up new avenues for analyzing dynamics of individual travel behavior. This paper addresses the issue of day-to-day variability in activity-travel behavior. The study, which is the first of its kind in China, applies a unique combination of methods to analyze the degree of dissimilarity between travel days using multi-day GPS data. First, multi-dimensional sequence alignment is applied to measure the degree of dissimilarity in individual daily activity-travel sequences between pairs of travel days. Next, a series of panel effects regression models is used to estimate the effects of socio-demographics and days of the week. The models are estimated using multi-day activity-travel patterns imputed from GPS-enabled smartphone data collected in Shanghai, China. Results indicate that (1) days of the week have significant effects on day-to-day variability in activity-travel behavior with weekday activity-travel sequences being more similar and thereby different from weekend sequences; (2) the degree of dissimilarity in activity-travel sequences is strongly influenced by respondent socio-demographic profiles; (3) individuals having more control over and flexibility in their work schedule show greater intra-personal variability. Day-to-day variability in activity-travel behavior of this sample is similar to patterns observed in developed countries in some aspects but different in others. Strict international comparison study based on comparative data collection is required to further distinguish the sources of travel behavior differences between developing countries and developed countries. The paper ends with a discussion of the limitations of this study and the implications of the research findings for future research.  相似文献   

20.
This paper has two major components. The first one is the day-to-day evolution of travelers’ mode and route choices in a bi-modal transportation system where traffic information (predicted travel cost) is available to travelers. The second one is a public transit operator adjusting or adapting its service over time (from period to period) based on observed system conditions. Particularly, we consider that on each day both travelers’ past travel experiences and the predicted travel cost (based on information provision) can affect travelers’ perceptions of different modes and routes, and thus affect their mode choice and/or route choice accordingly. This evolution process from day to day is formulated by a discrete dynamical model. The properties of such a dynamical model are then analyzed, including the existence, uniqueness and stability of the fixed point. Most importantly, we show that the predicted travel cost based on information provision may help stabilize the dynamical system even if it is not fully accurate. Given the day-to-day traffic evolution, we then model an adaptive transit operator who can adjust frequency and fare for public transit from period to period (each period contains a certain number of days). The adaptive frequency and fare in one period are determined from the realized transit demands and transit profits of the previous periods, which is to achieve a (locally) maximum transit profit. The day-to-day and period-to-period models and their properties are also illustrated by numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号