共查询到11条相似文献,搜索用时 0 毫秒
1.
Although one-way carsharing is suitable for more trip purposes than round-trip carsharing, many companies in the world operate only in the round-trip market. In this paper, we develop a method that optimizes the design of a one-way carsharing service between selected origin–destination pairs of an existing round-trip carsharing system. The goal is to supplement the established round-trip services with new one-way services and increase profitability. We develop an integer programming model to select the set of new one-way services and apply it to the case study of Boston, USA, considering only trips with one endpoint at a station in the round-trip Zipcar service network and the other endpoint at Logan Airport. The airport was chosen as a necessary endpoint for a one-way service because it is a very significant trip generator for which the round-trip carsharing is not suitable. Results show that these supplemental one-way services could be profitable. Enabling relocation operations between the existing round-trip stations and the Airport greatly improves the demand effectively satisfied, leads to an acceptable airport station size (in terms of the number of parking spots required), and is profitable; however, these benefits come with the need to manage relocation operations. 相似文献
2.
A reliability‐based traffic assignment model for multi‐modal transport network under demand uncertainty 下载免费PDF全文
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
3.
Reza Banai-Kashani 《Transportation》1989,16(1):81-96
This paper develops a new procedure for the problem of multimodal urban corridor travel demand estimation by using the Analytic Hierarchy Process (AHP). Certain conceptual and operational features of the AHP are common to the discrete choice theory-based modeling approach. Whereas the computational and data requirements of standard discrete choice models are immense, the proposed AHP approach deals efficiently with multidimensionality, nested demand structure and discrete travel decision making behavior. The paper concludes by summarizing the AHP-aided, step-by-step procedure for metropolitan travel demand (modal split) estimation. 相似文献
4.
Mariano Gallo Bruno Montella Luca D’Acierno 《Transportation Research Part C: Emerging Technologies》2011,19(6):1276-1305
In this paper we examine the transit network design problem under the assumption of elastic demand, focusing on the problem of designing the frequencies of a regional metro. In this problem, investments in transit services have appreciable effects on modal split. Neglecting demand elasticity can lead to solutions that may not represent the actual objectives of the design. We propose four different objective functions that can be adopted to assume demand as elastic, considering the costs of all transportation systems (car, bus and rail) as well as the external costs, and we define the constraints of the problem. Heuristic and meta-heuristic solution algorithms are also proposed. The models and algorithms are tested on a small network and on a real-scale network. 相似文献
5.
Pick‐up locations and bus allocation for transit‐based evacuation planning with demand uncertainty 下载免费PDF全文
This paper develops a decision‐support model for transit‐based evacuation planning under demand uncertainty. Demand uncertainty refers to the uncertainty associated with the number of transit‐dependent evacuees. A robust optimization model is proposed to determine the optimal pick‐up points for evacuees to assemble, and allocate available buses to transport the assembled evacuees between the pick‐up locations and different public shelters. The model is formulated as a mixed‐integer linear program and is solved via a cutting plane scheme. The numerical example based on the Sioux Falls network demonstrates that the robust plan yields lower total evacuation time and is reliable in serving the realized evacuee demand. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
This paper presents a joint trivariate discrete-continuous-continuous model for commuters’ mode choice, work start time and work duration. The model is designed to capture correlations among random components influencing these decisions. For empirical investigation, the model is estimated using a data set collected in the Greater Toronto Area (GTA) in 2001. Considering the fact that work duration involves medium- to long-term decision making compared to short-term activity scheduling decisions, work duration is considered endogenous to work start time decisions. The empirical model reveals many behavioral details of commuters’ mode choice, work start time and duration decisions. The primary objective of the model is to predict workers’ work schedules according to mode choice, which is considered a skeletal activity schedule in activity-based travel demand models. However, the empirical model reveals many behavioral details of workers’ mode choices and work scheduling. Independent application of the model for travel demand management policy evaluations is also promising, as it provides better value in terms of travel time estimates. 相似文献
7.
This paper provides an empirical basis for the evaluation of policies and programs that can increase the usage of bikes for different purposes as well as bike ownership. It uses an integrated econometric model of latent variable connecting multiple discrete choices. Empirical models are estimated by using a bicycle demand survey conducted in the City of Toronto in 2009. Empirical investigations reveal that latent perceptions of ‘bikeability’ and ‘safety consciousness’ directly influence the choice of biking. It is also found that the choice of the level of bike ownership (number of bikes) is directly influenced by latent ‘comfortability of biking’. The number of bikes owned moreover has a strong influence on the choices of biking for different purposes. It is clear that bike users in the City of Toronto are highly safety conscious. Increasing on-street and separate bike lanes proved to have the maximum effects on attracting more people to biking by increasing the perception of bikeability in the city, comfortability of biking in the city and increasing bike users’ sense of safety. In terms of individuals’ characteristics, older males are found to be the most conformable and younger females are the least comfortable group of cyclists in Toronto. 相似文献
8.
Investigating the joint choice behavior of intercity transport mode and high‐speed rail cabin with a strategy map 下载免费PDF全文
This paper investigates the joint choice behavior of intercity transport modes and high‐speed rail cabin class within a two‐dimensional choice structure. Although numerous studies have been conducted on the mode choice behavior, little is known about the influence of cabin class on their intercity traveling choice. Hence, this study is conducted with a revealed preference survey to investigate the intercity traveling behavior for the western corridor of Taiwan. The results of nested logit model reveal that a cabin strategy has a more significant influence on cabin choice than on mode choice. Furthermore, this study proposes a new strategy map concept to assist transport operators in defining and implementing their pricing strategies. The results suggest that to capture a higher market share, high‐speed rail operators should choose an active price reduction strategy, while bus and rail operators are advised to implement a passive price increase strategy to raise unit revenue. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
9.
This paper uses a previously developed spreadsheet cost model which simulates public transport modes operated on a 12-km route to analyse the total costs of different passenger demand levels. The previous cost model was a very powerful tool to estimate the social and operator costs for different public transport technologies. However, as the model is strategic, some basic assumptions were made which are relaxed in this paper. First, the speed-flow equation in the original spreadsheet model assumes that speed decreases according to the ratio of the current frequency and the lane capacity which is based on the safety headway without taking into account passenger boardings. However, this may vary in different operating environments. Therefore, the speed-flow equation is improved by moving from a linear equation to a piecewise equation that considers the features of different operating environments. Second, the model assumes that supply is sufficient to meet demand. However, when the level of demand is high for the lower-capacity public transport technologies, passengers may find the incoming vehicle full and therefore, they have to wait more than one service interval. This paper applies queuing theory to investigate the probability of having to wait longer than the expected service headways which will affect the average passenger waiting time. The extra waiting time for each passenger is calculated and applied in the spreadsheet cost model. Third, the original model assumed that demand was externally fixed (exogenous). To evaluate the differences after applying these equations, endogenous demand rather than exogenous demand will be investigated by using the elasticities for passenger waiting time and journey time. 相似文献
10.
Md. Tazul Islam 《运输规划与技术》2013,36(4):409-426
Abstract Trip chaining (or tours) and mode choice are two critical factors influencing a variety of patterns of urban travel demand. This paper investigates the hierarchical relationship between these two sets of decisions including the influences of socio-demographic characteristics on them. It uses a 6-week travel diary collected in Thurgau, Switzerland, in 2003. The structural equation modeling technique is applied to identify the hierarchical relationship. Hierarchy and temporal consistency of the relationship is investigated separately for work versus non-work tours. It becomes clear that for work tours in weekdays, trip-chaining and mode choice decisions are simultaneous and remain consistent across the weeks. For non-work tours in weekdays, mode choice decisions precede trip-chaining decisions. However, for non-work tours in weekends, trip-chaining decisions precede mode choice decisions. A number of socioeconomic characteristics also play major roles in influencing the relationships. Results of the investigation challenge the traditional approach of modeling mode choice separately from activity-scheduling decisions. 相似文献
11.
This paper analyses how the high-speed rail construction in Northeast Japan (Tohoku) has affected total demand and interregional travel patterns. We use annual interregional passenger data from 1989 to 2012 and apply regression analysis with the demand between Tokyo and the Tohoku prefectures as the dependent variable. We distinguish particularly between the ‘Full-’ and the ‘Mini-’ Shinkansen, where the latter are branch services running with reduced speed. We find that the ‘Full-Shinkansen’ quickly increases rail and total public transport trips and generates additional rail demand year on year. The ‘Mini-Shinkansen’ impacts are less pronounced. Furthermore, our analysis shows that the Shinkansen has shifted some demand from air to rail once it started operation and increased rail share gradually. We therefore suggest that predictions of demand impacts should carefully distinguish immediate from gradual impacts. We also discuss differences in regional demand in that not all prefectures have gained equally from Shinkansen construction. 相似文献