首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study proposes a potential-based dynamic pedestrian flow assignment model to optimize the evacuation time needed for all pedestrians to leave an indoor or outdoor area with internal obstacles and multiple exits, e.g., railway station, air terminal, plaza, and park. In the model, the dynamic loading of pedestrian flows on a two-dimensional space is formulated by a cell transmission model, the movement of crowds is driven by space potential, and the optimization of evacuation time is solved by a proportional swapping process. In this way, the proposed model can be applied to not only efficiently optimize the evacuation process of a crowd with large scale but also recognize local congestion dynamics during crowd evacuation. Finally, a set of numerical examples are presented to show the proposed model’s effectiveness for optimizing crowd evacuation process and its application to design a class of variable guide sign systems.  相似文献   

2.
This paper presents a hybrid simulation-assignment modeling framework for studying crowd dynamics in large-scale pedestrian facilities. The proposed modeling framework judiciously manages the trade-off between ability to accurately capture congestion phenomena resulting from the pedestrians’ collective behavior and scalability to model large facilities. We present a novel modeling framework that integrates a dynamic simulation-assignment logic with a hybrid (two-layer or bi-resolution) representation of the facility. The top layer consists of a network representation of the facility, which enables modeling the pedestrians’ route planning decisions while performing their activities. The bottom layer consists of a high resolution Cellular Automata (CA) system for all open spaces, which enables modeling the pedestrians’ local maneuvers and movement decisions at a high level of detail. The model is applied to simulate the crowd dynamics in the ground floor of Al-Haram Al-Sharif Mosque in the City of Mecca, Saudi Arabia during the pilgrimage season. The analysis illustrates the model’s capability in accurately representing the observed congestion phenomena in the facility.  相似文献   

3.
Pedestrians adjust both speed and stride length when they navigate difficult situations such as tight corners or dense crowds. They try to avoid collisions and to preserve their personal space. State-of-the-art pedestrian motion models automatically reduce speed in dense crowds simply because there is no space where the pedestrians could go. The stride length and its correct adaptation, however, are rarely considered. This leads to artefacts that impact macroscopic observation parameters such as densities in front of bottlenecks and, through this, flow. Hence modelling stride adaptation is important to increase the predictive power of pedestrian models. To achieve this we reformulate the problem as an optimisation problem on a disk around the pedestrian. Each pedestrian seeks the position that is most attractive in a sense of balanced goals between the search for targets, the need for individual space and the need to keep a distance from obstacles. The need for space is modelled according to findings from psychology defining zones around a person that, when invaded, cause unease. The result is a fully automatic adjustment that allows calibration through meaningful social parameters and that gives visually natural results with an excellent fit to measured experimental data.  相似文献   

4.
This paper investigates pedestrian crowd tactical‐level decision making during emergency evacuations. Of particular interest is crowd exit‐choice behaviour. Two sources of stated choice data are collected and combined. One data set is derived from an experiment linked to a real‐life exit choice experience of participants (in a non‐evacuation setting). We examine aspects that have often been taken for granted in the literature in connection with egress behaviour of crowds during emergencies. We quantify evacuees' trade‐off between “distance”, “density”, “exit visibility” and “directional density” as well as the interactive effect between exit visibility and tendency to follow others. A comprehensive random‐utility analysis is conducted ranging from traditionally practiced models to the state‐of‐the‐practice methods such as random‐coefficient nested logit. Our findings suggest that (i) unless evacuees face certain levels of uncertainty in the escape environment; flows of crowd are unlikely to be followed. Otherwise, most evacuees perceive other individuals as potential sources of congestion and extra delay (generalisation to situations where crowd is completely unfamiliar with the egress geometry, however, may require careful scrutiny). (ii) Evacuees mostly prefer visible exits over the exits whose congestion level is unknown to them (i.e. the tendency to minimise ambiguity). (iii) The presence of attribute uncertainty (e.g. exit visibility) significantly changes the impact of observing decisions of others on each individual choice maker. We also found out that (iv) spatial distribution of exits has a significant influence on evacuees' decisions (presenting itself in the form of violating the IIA assumption). (v) The marginal weights that different individuals place upon attributes of exits are significantly heterogeneous. (vi) There is meaningful correlation between certain utility weights of individual evacuees. These behavioural findings can provide significant behavioural insight essential for safe evacuation planning and accurate forecast of evacuees' behaviour. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Effective crowd management during large public gatherings is necessary to enable pedestrians' access to and from the venue and to ensure their safety. This paper proposes a network optimization-based methodology to support such efficient crowd movement during large events. Specifically, a bi-level integer program is presented that, at the upper-level, seeks a reconfiguration of the physical layout that will minimize total travel time incurred by system users (e.g. evacuees) given utility maximizing route decisions that are taken by individuals in response to physical offerings in terms of infrastructure at the lower-level. The lower-level formulation seeks a pure-strategy Nash equilibrium that respects collective behavior in crowds. A Multi-start Tabu Search with Sequential Quadratic Programming procedure is proposed for its solution. Numerical experiments on a hypothetical network were conducted to illustrate the proposed solution methodology and the insights it provides.  相似文献   

6.
We present a method of predicting pedestrian route choice behavior and physical congestion during the evacuation of indoor areas with internal obstacles. Under the proposed method, a network is first constructed by discretizing the space into regular hexagonal cells and giving these cells potentials before a modified cell transmission model is employed to predict the evolution of pedestrian flow in the network over time and space. Several properties of this cell transmission model are explored. The method can be used to predict the evolution of pedestrian flow over time and space in indoor areas with internal obstacles and to investigate the collection, spillback, and dissipation behavior of pedestrians passing through a bottleneck. The cell transmission model is further extended to imitate the movements of multiple flows of pedestrians with different destinations. An algorithm based on generalized cell potential is also developed to assign the pedestrian flow.  相似文献   

7.
Situations characterised by the presence of a high density of pedestrians involved in negative interactions (e.g. flows in opposite directions) often represent a problematic scenario for simulation models, especially those taking a discrete approach to the representation and management of spatial aspects of the environment. While these situations can be relatively infrequent, and even if architects, event organisers and crowd managers actually try to prevent them as much as possible, they simply cannot be neglected and they actually represent interesting situations to be analysed by means of simulation. The paper presents specific extensions to a floor-field Cellular Automata pedestrian model that are specifically aimed at supporting the simulation of high density situations comprising negative interactions among pedestrians without incurring in the traditional limits of discrete approaches. The models are formally described and experimented in experimental and real world situations.  相似文献   

8.
We propose a novel approach to pedestrian flow characterization. The definitions of density, flow and velocity existing in the literature are extended through a data-driven spatio-temporal discretization framework. The framework is based on three-dimensional Voronoi diagrams. Synthetic data is used to empirically investigate the performance of the approach and to illustrate its advantages. Our approach outperforms the considered approaches from the literature in terms of the robustness with respect to the simulation noise and with respect to the sampling frequency. Additionally, the proposed approach is by design (i) independent from an arbitrarily chosen discretization; (ii) appropriate for the multidirectional composition of pedestrian traffic; (iii) able to reflect the heterogeneity of the pedestrian population; and (iv) applicable to pedestrian trajectories described either analytically or as a sample of points.  相似文献   

9.
Local density, which is an indicator for comfortable moving of a pedestrian, is rarely considered in traditional force based and heuristics based pedestrian flow models. However, comfortable moving is surely a demand of pedestrian in normal situations. Recently, Voronoi diagram had been successfully adopted to obtain the local density of a pedestrian in empirical studies. In this paper, Voronoi diagram is introduced into the heuristics based pedestrian flow model. It provides not only local density but also other information for determining moving velocity and direction. Those information include personal space, safe distance, neighbors, and three elementary characteristics directions. Several typical scenarios are set up to verify the proposed model. The simulation results show that the velocity-density relations and capacities of bottleneck are consistent with the empirical data, and many self-organization phenomena, i.e., arching phenomenon and lane formation, are also reproduced. The pedestrians are likely to be homogeneously distributed when they are sensitive to local density, otherwise pedestrians are non-uniformly distributed and the stop-and-go waves are likely to be reproduced. Such results indicate that the Voronoi diagram is a promising tool in modeling pedestrian dynamics.  相似文献   

10.
A macroscopic loading model applicable to time-dependent and congested pedestrian flows in public walking areas is proposed. Building on the continuum theory of pedestrian flows and the cell transmission model for car traffic, an isotropic framework is developed that can describe the simultaneous and potentially conflicting propagation of multiple pedestrian groups. The model is formulated at the aggregate level and thus computationally cheap, which is advantageous for studying large-scale problems. A detailed analysis of several basic flow patterns including counter- and cross flows, as well as two generic scenarios involving a corner- and a bottleneck flow is carried out. Various behavioral patterns ranging from disciplined queueing to impatient jostling can be realistically reproduced. Following a systematic model calibration, two case studies involving a Swiss railway station and a Dutch bottleneck flow experiment are presented. A comparison with the social force model and pedestrian tracking data shows a good performance of the proposed model with respect to predictions of travel time and density.  相似文献   

11.
A framework for assessing the usage and level-of-service of rail access facilities is presented. It consists of two parts. A dynamic demand estimator allows to obtain time-dependent pedestrian origin–destination demand within walking facilities. Using that demand, a traffic assignment model describes the propagation of pedestrians through the station, providing an estimate of prevalent traffic conditions in terms of flow, walking times, speed and density. The corresponding level-of-service of the facilities can be directly obtained. The framework is discussed at the example of Lausanne railway station. For this train station, a rich set of data sources including travel surveys, pedestrian counts and trajectories has been collected in collaboration with the Swiss Federal Railways. Results show a good performance of the framework. To underline its practical applicability, a six-step planning guideline is presented that can be used to design and optimize rail access facilities for new or existing train stations. In the long term, the framework may also be used for crowd management, involving real-time monitoring and control of pedestrian flows.  相似文献   

12.
Cross-border transit facilities constitute major public investment, and thus must serve the long-term needs of the communities, such as providing access to schools and businesses, contributing to a shared regional culture and lifestyle, fostering international trade, and supporting jobs for the region’s residents. Numerous studies have been conducted to evaluate the economic implications of vehicular flow delays at border crossings, however none of the studies focused on assessing cross-border flow of bus passengers and pedestrians. Since pedestrians are considered to be autonomous, intelligent, and perceptive, it is a challenging task to predict pedestrian movement and behavior in comparison to vehicular flows which follow a specific set of traffic rules. This paper presents a multiagent based multimodal simulation model to evaluate the capacity and performance of a cross-border transit facility. The significance of this research is the use of dynamic mode choice functionality in the model, which allows an individual person to make instantaneous choices between available modes of transportation. The scope of interest of the paper is limited to simulating access interface, circulation areas, ancillary and processing facilities. The developed model was calibrated to ensure realistic performance, and validated against specific performance criteria such as throughput per processing facility. In order to demonstrate the applicability of the developed simulation model, capacity and operational planning of a pedestrian transit facility was performed. The relative performance of alternative design or configuration was evaluated using the level of service criteria. Lastly, the effectiveness of each proposed capacity or operational improvement strategy was compared to the “do-nothing” scenario.  相似文献   

13.
Simulating pedestrian movements at signalized crosswalks in Hong Kong   总被引:2,自引:0,他引:2  
This paper presents a new pedestrian simulation (PS) model for signalized crosswalks in Hong Kong. This PS model is capable of estimating the variations of walking speed particularly on the effects of bi-directional pedestrian flows so as to determine the minimum required duration of pedestrian crossing time. Video records taken from the observational surveys at the selected crosswalk in urban area were used to extract the required data for model calibration. It was found that the design walking speed for signalized crosswalks should be varied by the effects of the bi-directional pedestrian flows. It was also interesting to note that the negative impact of the bi-directional flow effects (ranging from uni-directional to bi-directional pedestrian flows) on the chance of pedestrian crossing the crosswalk is increasing from free-flow to at-capacity flow conditions. The new PS model is also validated using an independent data set so as to examine the reliability of the simulation results. The validation results show that the new PS model can provide an accurate evaluation on the changes of walking speed and its standard deviation under different scenarios with particular emphasis on the effects of the bi-directional pedestrian flows. The advancement of this PS model can be applied to assess the effects of each improvement measure and to evaluate the benefits of each scenario in practice.  相似文献   

14.
15.
Collective movement is important during emergencies such as natural disasters or terrorist attacks, when rapid egress is essential for escape. The development of quantitative theories and models to explain and predict the collective dynamics of pedestrians has been hindered by the lack of complementary data under emergency conditions. Collective patterns are not restricted to humans, but have been observed in other non-human biological systems. In this study, a mathematical model for crowd panic is derived from collective animal dynamics. The development and validation of the model is supported by data from experiments with panicking Argentine ants (Linepithema humile). A first attempt is also made to scale the model parameters for collective pedestrian traffic from those for ant traffic, by employing a scaling concept approach commonly used in biology.  相似文献   

16.
Few studies have examined the relationship between micro-scale features of the built environment and street segment usage. Micro-scale features of the built environment include the width of the sidewalk, the presence of amenities such as benches and trash bins, and the presence of crossing aids such as stoplights and crosswalks. This study employs segment-level primary data collected for 338 street segments in close proximity to one of 71 bus rapid transit stations in Bogotá, Colombia. We also use secondary data to control for area-level characteristics such as density, socio-economic stratum, unemployment, and crime. Factor and regression analyses are to use identify two dimensions of the built environment that are associated with higher levels of pedestrian activity: pedestrian-friendly amenities, comprised of wider and higher quality sidewalks and the presence of amenities such as benches, garbage cans, and bike paths; and connectivity, comprised of higher levels of road density, three- and four-way intersections, and density. In addition, we find greater pedestrian activity on segments with higher development intensity, with more mix of land uses, and with more crossing aids. Although the relationships identified are not causal, they are suggestive in terms of planning successful built environment interventions.  相似文献   

17.
Although various theories have been adopted to develop reliable pedestrian walking models, a limited effort has been made to calibrate them rigorously based on individual trajectories. Most researchers have validated their models by comparing observed and estimated traffic flow parameters such as speed, density, and flow rate, or replaced the validation by visual confirmation of some well-known phenomena such as channelization and platooning. The present study adopted maximum likelihood estimation to calibrate a social-force model based on the observed walking trajectories of pedestrians. The model was assumed to be made up of five components (i.e., inertia, desired direction, leader–follower relationship, collision avoidance, and random error), and their corresponding coefficients represented relative sensitivity. The model also included coefficients for individual-specific characteristics and for a distance-decay relationship between a pedestrian and his/her leaders or colliders. The calibration results varied with the two density levels adopted in the present study. In the case of high density, significant coefficient estimates were found with respect to both the leader–follower relationship and collision avoidance. Collision avoidance did not affect the pedestrian’s walking behavior for the low-density case due to channelization. The distance limit was confirmed, within which a pedestrian is affected by neighbors. At the low-density level, by comparison with women, men were found to more actively follow leaders, and pedestrians walking in a party were found to be less sensitive to the motion of leaders at the high-density level.  相似文献   

18.
Pedestrian facility size is currently determined in direct relationship to the design level of service. However, the design level of service is chosen arbitrarily from the six levels of service, which are assumed to represent the freedom available for movement at different levels of pedestrian flow. This direct and simple approach to facility sizing is shown to have two fundamental deficiencies that contribute to wasteful over capacity. In this article, a cost-based approach is introduced to overcome the deficiencies. Two analytical models, one for determining optimal design density and another for determining optimal design flow, are presented. The optimum design parameters minimize the total cost of the facility defined as the sum of construction cost and user cost. The sensitivity of the optimum parameters to the cost and pedestrian flow parameters is demonstrated using a numerical example.  相似文献   

19.
Safe and comfortable walking is essential for pedestrian movement in modern urban transportation systems. Since pedestrian traffic cannot be restricted in some specified streets, some measures for pedestrians have to be taken everywhere in urban areas. This research describes a way to evaluate ordinary sidewalks, and two different methods are proposed. One is an evaluation based on pedestrian behaviour and the other is an evaluation based on pedestrian opinion. Using the indices of pedestrian density and sidewalk width, we can estimate the level of service of sidewalk usage. But generally speaking, since it is not often that a sidewalk is insufficient to deal with pedestrian flow, another approach is necessary for its evaluation, that is, pedestrian awareness of sidewalks must be taken into account. The former method is recommended for all sidewalks, especially with comparatively heavy pedestrian traffic, and the latter method is recommended for ones with light pedestrian traffic.  相似文献   

20.
The value of a pedestrian stream simulation depends on its ability to reproduce natural behaviour of pedestrians in different situations. Most models assume that pedestrians are single-minded and constantly move towards their destinations. However, our observations at two major German railway stations made during field experiments and our analysis of video recordings at one of these stations revealed that in virtually every setting a significant proportion of pedestrians do not walk continuously. Instead, they occasionally change their route in order to visit certain locations and stand there for a period of time. By waiting, they often block walking pedestrians and thereby influence the overall dynamics.In this paper, we evaluate the impact of waiting pedestrians and propose a model for waiting pedestrians based on cellular automata. The model is able to reproduce the observed pedestrian behaviour. We illustrate the model with simulations of several real life scenarios for a major German railway station and show that during rush hour standing pedestrians may prolong walking time by up to nearly 20%. We also demonstrate how the developed model can be used for the analysis of infrastructures, and prediction of problematic areas in public spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号