共查询到20条相似文献,搜索用时 0 毫秒
1.
A mathematical model of a rapid transit system has been developed. The model employs computer techniques to simulate the physical system. To further enhance the results and gain management confidence in the reliability and validity of the design of the model, a TV‐like display of the computer results enables the viewer to “see” the performance of the model as it happens. The results displayed thus include: The track layout, time (simulation), train position on the track, and the number of passengers riding on each train and waiting at each platform or station. The computer printout of results is limited to summary type data, relying on the display for detailed evaluation and analysis. 相似文献
2.
This article describes a methodology for selecting days that are comparable in terms of the conditions faced during air traffic flow management initiative planning. This methodology includes the use of specific data sources, specific features of calendar days defined using these data sources, and the application of a specific form of classification and then cluster analysis. The application of this methodology will produce results that enable historical analysis of the use of initiatives and evaluation of the relative success of different courses of action. Several challenges are overcome here including the need to identify the appropriate machine learning algorithms to apply, to quantify the differences between calendar days, to select features describing days, to obtain appropriate raw data, and to evaluate results in a meaningful way. These challenges are overcome via a review of relevant literature, the identification and trial of several useful models and data sets, and careful application of methods. For example, the cluster analysis that ultimately selects sets of similar days uses a distance metric based on variable importance measures from a separate classification model of observed initiatives. The methodology defined here is applied to the New York area, although it could be applied by other researchers to other areas. 相似文献
3.
Airport surface congestion results in significant increases in taxi times, fuel burn and emissions at major airports. This paper describes the field tests of a congestion control strategy at Boston Logan International Airport. The approach determines a suggested rate to meter pushbacks from the gate, in order to prevent the airport surface from entering congested states and to reduce the time that flights spend with engines on while taxiing to the runway. The field trials demonstrated that significant benefits were achievable through such a strategy: during eight four-hour tests conducted during August and September 2010, fuel use was reduced by an estimated 12,250–14,500 kg (4000–4700 US gallons), while aircraft gate pushback times were increased by an average of only 4.4 min for the 247 flights that were held at the gate. 相似文献
5.
The Air Traffic Management system is under a paradigm shift led by NextGen and SESAR. The new trajectory-based Concept of Operations is supported by performance-based trajectory predictors as major enablers. Currently, the performance of ground-based trajectory predictors is affected by diverse factors such as weather, lack of integration of operational information or aircraft performance uncertainty.Trajectory predictors could be enhanced by learning from historical data. Nowadays, data from the Air Traffic Management system may be exploited to understand to what extent Air Traffic Control actions impact on the vertical profile of flight trajectories.This paper analyses the impact of diverse operational factors on the vertical profile of flight trajectories. Firstly, Multilevel Linear Models are adopted to conduct a prior identification of these factors. Then, the information is exploited by trajectory predictors, where two types are used: point-mass trajectory predictors enhanced by learning the thrust law depending on those factors; and trajectory predictors based on Artificial Neural Networks.Air Traffic Control vertical operational procedures do not constitute a main factor impacting on the vertical profile of flight trajectories, once the top of descent is established. Additionally, airspace flows and the flight level at the trajectory top of descent are relevant features to be considered when learning from historical data, enhancing the overall performance of the trajectory predictors for the descent phase. 相似文献
6.
Objectives: The objective of the presented work is to present novel methods for big data exploration in the Air Traffic Control (ATC) domain. Data is formed by sets of airplane trajectories, or trails, which in turn records the positions of an aircraft in a given airspace at several time instants, and additional information such as flight height, speed, fuel consumption, and metadata (e.g. flight ID). Analyzing and understanding this time-dependent data poses several non-trivial challenges to information visualization.Materials and methods: To address this Big Data challenge, we present a set of novel methods to analyze aircraft trajectories with interactive image-based information visualization techniques.As a result, we address the scalability challenges in terms of data manipulation and open questions by presenting a set of related visual analysis methods that focus on decision-support in the ATC domain. All methods use image-based techniques, in order to outline the advantages of such techniques in our application context, and illustrated by means of use-cases from the ATC domain.Results: For each considered use-case, we outline the type of questions posed by domain experts, data involved in addressing these questions, and describe the specific image-based techniques we used to address these questions. Further, for each of the proposed techniques, we describe the visual representation and interaction mechanisms that have been used to address the above-mentioned goals. We illustrate these use-cases with real-life datasets from the ATC domain, and show how our techniques can help end-users in the ATC domain discover new insights, and solve problems, involving the presented datasets. 相似文献
7.
Multi-Airport Systems (MAS), or Metroplexes, serve air traffic demand in cities with two or more airports. Due to the spatial proximity and operational interdependency of the airports, Metroplex airspaces are characterized by high complexity, and current system structures fail to provide satisfactory utilization of the available airspace resources. In order to support system-level design and management towards increased operational efficiency in such systems, an accurate depiction of major demand patterns is a prerequisite. This paper proposes a framework for the robust identification of significant air traffic flow patterns in Metroplex systems, which is aligned with the dynamic route service policy for the effective management of Metroplex operations. We first characterize deterministic demand through a spatio-temporal clustering algorithm that takes into account changes in the traffic flows over the planning horizon. Then, in order to handle uncertainties in the demand, a Distributionally Robust Optimization (DRO) approach is proposed, which takes into account demand variations and prediction errors in a robust way to ensure the reliability of the demand identification. The DRO-based approach is applied on pre-tactical (i.e. one-day planning) as well as operational levels (i.e. 2-h rolling horizon). The framework is applied to Time Based Flow Management (TBFM) data from the New York Metroplex. The framework and results are validated by Subject Matter Experts (SMEs). 相似文献
8.
Trajectory optimisation has shown good potential to reduce environmental impact in aviation. However, a recurring problem is the loss in airspace capacity that fuel optimal procedures pose, usually overcome with speed, altitude or heading advisories that lead to more costly trajectories. This paper aims at the quantification in terms of fuel and time consumption of implementing suboptimal trajectories in a 4D trajectory context that use required times of arrival at specific navigation fixes. A case study is presented by simulating conflicting Airbus A320 departures from two major airports in Catalonia. It is shown how requiring an aircraft to arrive at a waypoint early or late leads to increased fuel burn. In addition, the efficiency of such methods to resolve air traffic conflicts is studied in terms of both fuel burn and resulting aircraft separations. Finally, various scenarios are studied reflecting various airline preferences with regards to cost and fuel burn, as well as different route and conflict geometries for a broader scope of study. 相似文献
9.
Reducing the air pollution from increases in traffic congestion in large cities and their surroundings is an important problem that requires changes in travel behavior. Road pricing is an effective tool for reducing air pollution, as reflected currently urban road pricing outcomes (Singapore, London, Stockholm and Milan). A survey was conducted based on establishing a hypothetical urban road pricing system in Madrid (a random sample size n = 1298). We developed a forecast air pollution model with time series analysis to evaluate the consequences of possible air pollution decreases in Madrid. Results reveal that the hypothetical road pricing for Madrid could have highly significant effects on decreasing air pollution outside of the city and in the inner city during the peak operating time periods of maximum congestion (morning peak hours from 7:00 to 10:00 and evening peak hours from 18:00 to 20:00). Furthermore, this system could have significant positive effects on a shift toward using public transport and non-motorized modes inside the hypothetical toll zone. This reveals that the system has a high capacity to motivate a decrease in air pollution and impose more sustainable behavior for public transport users. 相似文献
10.
Pedestrians as compared to vehicular traffic enjoy a high degree freedom of movement even in heavily congested areas. Consequently, there are more alternative links available to pedestrians between a given origin‐destination (O‐D) pair. This paper describes a study done by the University of Calgary to evaluate the factors affecting the choice of route on intra‐CBD trips or trips within the Central Business District (CBD). An origin destination survey conducted in downtown Calgary, Alberta enabled the identification of the most significant factors influencing the choice. These factors were analyzed in relation to the physical characteristics of the location, personal characteristics of the trip maker and the type of the trip. It appears that most people chose the shortest link and factors such as the level of congestion, safety or visual attractions were only secondary. This suggests that the length should be made a major consideration when planning and designing pedestrian links. 相似文献
11.
This paper introduces a linear holding strategy based on prior works on cruise speed reduction, aimed at performing airborne delay at no extra fuel cost, as a complementary strategy to current ground and airborne holding strategies. Firstly, the equivalent speed concept is extended to climb and descent phases through an analysis of fuel consumption and speed from aircraft performance data. This gives an insight of the feasibility to implement the concept, differentiating the case where the cruise flight level initially requested is kept and the case where it can be changed before departure in order to maximize the linear holding time. Illustrative examples are given, where typical flights are simulated using an optimal trajectory generation tool where linear holding is maximized while keeping constant the initially planned fuel. Finally, the effects of linear holding are thoroughly assessed in terms of the vertical trajectory profiles, range of feasible speed intervals and trade-offs between fuel and time. Results show that the airborne delay increases significantly with nearly 3-fold time for short-haul flights and 2-fold for mid-hauls to the cases in prior works. 相似文献
12.
Gulf carriers, such as Emirates Airline, Etihad Airways, and Qatar Airways, have expanded aggressively and are creating an increasingly dense global network. These carriers’ future growth prospects, however, hinge on their ability to gain access to markets in Europe and America, for example. Existing bilateral agreements stifle the Gulf carriers’ ambitious expansion plans in some instances, and incumbent carriers lobby to restrict further market access. To contribute to this debate, the objective of this research is to empirically examine the effects of Gulf carrier competition on U.S. carriers’ passenger volumes and fares in international route markets. Based on data obtained from the U.S. Department of Transportation, the empirical results suggest that greater competition by Gulf carriers in U.S. international markets is associated with (1) significant growth in U.S.–Middle East traffic volumes and (2) small but statistically significant traffic losses and fare reductions for U.S. carriers in route markets connecting the U.S. with Africa, Asia, Australia and Europe. 相似文献
13.
In this paper, we build an aggregate demand model for air passenger traffic in a hub-and-spoke network. This model considers the roles of airline service variables such as service frequency, aircraft size, ticket price, flight distance, and number of spokes in the network. It also takes into account the influence of local passengers and social-economic and demographic conditions in the spoke and hub metropolitan areas. The hub airport capacity, which has a significant impact on service quality in the hub airport and in the whole hub-and-spoke network, is also taken into consideration.Our demand model reveals that airlines can attract more connecting passengers in a hub-and-spoke network by increasing service frequency than by increasing aircraft size in the same percentage. Our research confirms the importance of local service to connecting passengers, and finds that, interestingly, airlines’ services in the first flight leg are more important to attract passengers than those in the second flight segment. Based on data in this study, we also find that a 1% reduction of ticket price will bring about 0.9% more connecting passengers, and a 1% increase of airport acceptance rate can bring about 0.35% more connecting passengers in the network, with all else equal. These findings are helpful for airlines to understand the effects of changing their services, and also useful for us to quantify the benefits of hub airport expansion projects.At the end of this paper, we give an example as an application to demonstrate how the developed demand model could be used to valuate passengers’ direct benefit from airport capacity expansion. 相似文献
14.
In this paper, a model predictive control approach for improving the efficiency of bicycling as part of intermodal transportation systems is proposed. Considering a dedicated bicycle lanes infrastructure, the focus in this paper is to optimize the dynamic interaction between bicycles and vehicles at the multimodal urban traffic intersections. In the proposed approach, a dynamic model for the flows, queues, and number of both vehicles and bicycles is explicitly incorporated in the controller. For obtaining a good trade-off between the total time spent by the cyclists and by the drivers, a Pareto analysis is proposed to adjust the objective function of the MPC controller. Simulation results for a two-intersections urban traffic network are presented and the controller is analyzed considering different methods of including in the MPC controller the inflow demands of both vehicles and bicycles. 相似文献
15.
This paper presents two stochastic programming models for the allocation of time slots over a network of airports. The proposed models address three key issues. First, they provide an optimization tool to allocate time slots, which takes several operational aspects and airline preferences into account; second, they execute the process on a network of airports; and third they explicitly include uncertainty. To the best of our knowledge, these are the first models for time slot allocation to consider both the stochastic nature of capacity reductions and the problem’s network structure. From a practical viewpoint, the proposed models provide important insights for the allocation of time slots. Specifically, they highlight the tradeoff between the schedule/request discrepancies, i.e., the time difference between allocated time slots and airline requests, and operational delays. Increasing schedule/request discrepancies enables a reduction in operational delays. Moreover, the models are computationally viable. A set of realistic test instances that consider the scheduling of four calendar days on different European airport networks has been solved within reasonable – for the application’s context – computation times. In one of our test instances, we were able to reduce the sum of schedule/request discrepancies and operational delays by up to 58%. This work provides slot coordinators with a valuable decision making tool, and it indicates that the proposed approach is very promising and may lead to relevant monetary savings for airlines and aircraft operators. 相似文献
16.
Hanif D. Sherali Justin M. Hill 《Transportation Research Part C: Emerging Technologies》2009,17(6):631-641
In this paper, we consider a particular class of network flow problems that seeks a shortest path, if it exists, between a source node s and a destination node d in a connected digraph, such that we arrive at node d at a specified time τ while leaving node s no earlier than a lower-bounding time LB, and where the availability of each network link is time-dependent in the sense that it can be traversed only during specified intervals of time. We refer to this problem as the reverse time-restricted shortest path problem (RTSP), and it arises, for example, in the context of generating flight plans within air traffic management approaches under severe convective weather conditions. We show that this problem is NP-hard in general, but is polynomially solvable under a special regularity condition. A pseudo-polynomial time dynamic programming algorithm is developed to solve Problem RTSP, along with an effective heap implementation strategy. Computational results using real flight generation test cases as well as random simulated problems are presented. 相似文献
17.
In this paper, we consider a coordinated multi-aircraft 4D (3D space plus time) trajectories planning problem which is illustrated by planning 4D trajectories for aircraft traversing an Air Traffic Control (ATC) sector. The planned 4D trajectories need to specify each aircraft’s position at any time, ensuring conflict-free and reducing fuel and delay costs, with possible aircraft maneuvers such as speed adjustment and flight level change. Different from most existing literature, the impact of buffer safety distance is also under consideration, and conflict-free is guaranteed at any given time (not only at discrete time instances). The problem is formulated as a pure-strategy game with aircraft as players and all possible 4D trajectories as strategies. An efficient maximum improvement distributed algorithm is developed to find equilibrium at which every aircraft cannot unilaterally improve further, without enumerating all possible 4D trajectories in advance. Proof of existence of the equilibrium and convergence of the algorithm are given. A case study based on real air traffic data shows that the algorithm is able to solve 4D trajectories for online application with estimated 16.7% reduction in monetary costs, and allocate abundant buffer safety distance at minimum separation point. Scalability of the algorithm is verified by computational experiments. 相似文献
18.
For tools that generate more efficient flight routes or reroute advisories, it is important to ensure compatibility of automation and autonomy decisions with human objectives so as to ensure acceptability by the human operators. In this paper, the authors developed a proof of concept predictor of operational acceptability for route changes during a flight. Such a capability could have applications in automation tools that identify more efficient routes around airspace impacted by weather or congestion and that better meet airline preferences. The predictor is based on applying data mining techniques, including logistic regression, a decision tree, a support vector machine, a random forest and Adaptive Boost, to historical flight plan amendment data reported during operations and field experiments. Cross validation was used for model development, while nested cross validation was used to validate the models. The model found to have the best performance in predicting air traffic controller acceptance or rejection of a route change, using the available data from Fort Worth Air Traffic Control Center and its adjacent Centers, was the random forest, with an F-score of 0.77. This result indicates that the operational acceptance of reroute requests does indeed have some level of predictability, and that, with suitable data, models can be trained to predict the operational acceptability of reroute requests. Such models may ultimately be used to inform route selection by decision support tools, contributing to the development of increasingly autonomous systems that are capable of routing aircraft with less human input than is currently the case. 相似文献
19.
This paper aims at examining the possibility of setting up a model terminal for the transportation of dangerous goods. It should be designed in such a manner that its use would be possible for any kind of transportation. This consideration has been prompted by the interface between transportation planning and technology, as well as by the tendency for harmonizing international recommendations pertaining to the transportation and handling of dangerous goods, especially during the last decades where unified transport has gained ground due to the advantages provided for the safe consignment of dangerous cargoes. Since the large increase in terminal productivity is due to the heavy investments that were effected in terminal installations and to the modernization of the administration‐management of terminals, a mathematical simulation has been adopted to assist the determination of the capacity of a terminal for dangerous goods. It is evident that different criteria and various assumptions have been taken into account in order to facilitate a deeper analysis, without ignoring the contribution of dangerous goods to the socio‐economic development. From the outset of the study, it was already clear that the said process will make it possible to present—as a model—a simple but well defined situation for the purpose of drawing useful conclusions. 相似文献
20.
Many airports are encountering the problem of insufficient capacity, which is particularly severe in periods of increased traffic. A large number of elements influence airport capacity, but one of the most important is runway occupancy time. This time depends on many factors, including how the landing roll procedure is performed. The procedure usually does not include the objective to minimize the runway occupancy time. This paper presents an analysis which shows that the way of braking during landing roll has an essential impact on runway throughput and thus on airport capacity. For this purpose, the landing roll simulator (named ACPENSIM) was created. It uses Petri nets and is a convenient tool for dynamic analysis of aircraft movement on the runway with given input parameters and a predetermined runway exit. Simulation experiments allowed to create a set of nominal braking profiles that have different objective functions: minimizing the runway occupancy time, minimizing noise, minimizing tire wear, maximizing passenger comfort and maximizing airport capacity as a whole. The experiments show that there is great potential to increase airport capacity by optimizing the braking procedure. It has been shown that by using the proposed braking profiles it is possible to reduce the runway occupancy time even by 50%. 相似文献