首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.

Fleet operators rely on forecasts of future user requests to reposition empty vehicles and efficiently operate their vehicle fleets. In the context of an on-demand shared-use autonomous vehicle (AV) mobility service (SAMS), this study analyzes the trade-off that arises when selecting a spatio-temporal demand forecast aggregation level to support the operation of a SAMS fleet. In general, when short-term forecasts of user requests are intended for a finer space–time discretization, they tend to become less reliable. However, holding reliability constant, more disaggregate forecasts provide more valuable information to fleet operators. To explore this trade-off, this study presents a flexible methodological framework to evaluate and quantify the impact of spatio-temporal demand forecast aggregation on the operational efficiency of a SAMS fleet. At the core of the methodological framework is an agent-based simulation that requires a demand forecasting method and a SAMS fleet operational strategy. This study employs an offline demand forecasting method, and an online joint AV-user assignment and empty AV repositioning strategy. Using this forecasting method and fleet operational strategy, as well as Manhattan, NY taxi data, this study simulates the operations of a SAMS fleet across various spatio-temporal aggregation levels. Results indicate that as demand forecasts (and subregions) become more spatially disaggregate, fleet performance improves, in terms of user wait time and empty fleet miles. This finding comes despite demand forecast quality decreasing as subregions become more spatially disaggregate. Additionally, results indicate the SAMS fleet significantly benefits from higher quality demand forecasts, especially at more disaggregate levels.

  相似文献   

2.
Autonomous vehicle (AV) technology holds great promise for improving the efficiency of traditional vehicle sharing systems. In this paper, we investigate a new vehicle sharing system using AVs, referred to as autonomous vehicle sharing and reservation (AVSR). In such a system, travelers can request AV trips ahead of time and the AVSR system operator will optimally arrange AV pickup and delivery schedules and AV trip chains based on these requests. A linear programming model is proposed to efficiently solve for optimal solutions for AV trip chains and required fleet size through constructed AVSR networks. Case studies show that AVSR can significantly increase vehicle use rate (VUR) and consequentially reduce vehicle ownership significantly. In the meantime, it is found that the actual vehicle miles traveled (VMT) in AVSR systems is not significantly more than that of conventional taxis, despite inevitable empty hauls for vehicle relocation in AVSR systems. The results imply huge potential benefits from AVSR systems on improving mobility and sustainability of our current transportation systems.  相似文献   

3.
Autonomous vehicles (AVs) represent potentially disruptive and innovative changes to public transportation (PT) systems. However, the exact interplay between AV and PT is understudied in existing research. This paper proposes a systematic approach to the design, simulation, and evaluation of integrated autonomous vehicle and public transportation (AV + PT) systems. Two features distinguish this research from the state of the art in the literature: the first is the transit-oriented AV operation with the purpose of supporting existing PT modes; the second is the explicit modeling of the interaction between demand and supply.We highlight the transit-orientation by identifying the synergistic opportunities between AV and PT, which makes AVs more acceptable to all the stakeholders and respects the social-purpose considerations such as maintaining service availability and ensuring equity. Specifically, AV is designed to serve first-mile connections to rail stations and provide efficient shared mobility in low-density suburban areas. The interaction between demand and supply is modeled using a set of system dynamics equations and solved as a fixed-point problem through an iterative simulation procedure. We develop an agent-based simulation platform of service and a discrete choice model of demand as two subproblems. Using a feedback loop between supply and demand, we capture the interaction between the decisions of the service operator and those of the travelers and model the choices of both parties. Considering uncertainties in demand prediction and stochasticity in simulation, we also evaluate the robustness of our fixed-point solution and demonstrate the convergence of the proposed method empirically.We test our approach in a major European city, simulating scenarios with various fleet sizes, vehicle capacities, fare schemes, and hailing strategies such as in-advance requests. Scenarios are evaluated from the perspectives of passengers, AV operators, PT operators, and urban mobility system. Results show the trade off between the level of service and the operational cost, providing insight for fleet sizing to reach the optimal balance. Our simulated experiments show that encouraging ride-sharing, allowing in-advance requests, and combining fare with transit help enable service integration and encourage sustainable travel. Both the transit-oriented AV operation and the demand-supply interaction are essential components for defining and assessing the roles of the AV technology in our future transportation systems, especially those with ample and robust transit networks.  相似文献   

4.
This paper develops an integrated model to characterize the market penetration of autonomous vehicles (AVs) in urban transportation networks. The model explicitly accounts for the interplay among the AV manufacturer, travelers with heterogeneous values of travel time (VOTT), and road infrastructure capacity. By making in-vehicle time use more leisurely or productive, AVs reduce travelers’ VOTT. In addition, AVs can move closer together than human-driven vehicles because of shorter safe reaction time, which leads to increased road capacity. On the other hand, the use of AV technologies means added manufacturing cost and higher price. Thus, traveler adoption of AVs will trade VOTT savings with additional out-of-pocket cost. The model is structured as a leader (AV manufacturer)-follower (traveler) game. Given the cost of producing AVs, the AV manufacturer sets AV price to maximize profit while anticipating AV market penetration. Given an AV price, the vehicle and routing choice of heterogeneous travelers are modeled by combining a multinomial logit model with multi-modal multi-class user equilibrium (UE). The overall problem is formulated as a mathematical program with complementarity constraints (MPCC), which is challenging to solve. We propose a solution approach based on piecewise linearization of the MPCC as a mixed-integer linear program (MILP) and solving the MILP to global optimality. Non-uniform distribution of breakpoints that delimit piecewise intervals and feasibility-based domain reduction are further employed to reduce the approximation error brought by linearization. The model is implemented in a simplified Singapore network with extensive sensitivity analyses and the Sioux Falls network. Computational results demonstrate the effectiveness and efficiency of the solution approach and yield valuable insights about transportation system performance in a mixed autonomous/human driving environment.  相似文献   

5.
Emerging autonomous vehicles (AVs) and shared mobility systems per se will transform urban passenger transportation. Coupled together, shared AVs (SAVs) can facilitate widespread use of shared mobility services by providing flexible public travel modes comparable to private AV. Hence, it may be conjectured that future urban mobility is likely an on-demand service and AV private ownership is unappealing. Nonetheless, it is still unclear what observable and latent factors will drive public interest in (S)AVs, the answer to which will have important implications on transportation system performance. This paper aims to jointly model public interest in private AVs and multiple SAV configurations (carsharing, ridesourcing, ridesharing, and access/egress mode) in daily and commute travels with explicit treatment of the correlations across the (S)AV types. To this end, multivariate ordered outcome models with latent variables are employed, whereby latent attitudes and preferences describing traveler safety concern about AV, green travel pattern, and mobility-on-demand savviness are accounted for using structural and measurement equations. Drawing from a stated preference survey in the State of Washington, important insights are gained into the potential user groups based on the socio-economic, built environment, and daily/commute travel behavior attributes. Key policies are also offered to promote public interest in (S)AVs by scrutinizing the marginal effects of the latent variables.  相似文献   

6.
Shared autonomous vehicles, or SAVs, have attracted significant public and private interest because of their opportunity to simplify vehicle access, avoid parking costs, reduce fleet size, and, ultimately, save many travelers time and money. One way to extend these benefits is through an electric vehicle (EV) fleet. EVs are especially suited for this heavy usage due to their lower energy costs and reduced maintenance needs. As the price of EV batteries continues to fall, charging facilities become more convenient, and renewable energy sources grow in market share, EVs will become more economically and environmentally competitive with conventionally fueled vehicles. EVs are limited by their distance range and charge times, so these are important factors when considering operations of a large, electric SAV (SAEV) fleet.This study simulated performance characteristics of SAEV fleets serving travelers across the Austin, Texas 6-county region. The simulation works in sync with the agent-based simulator MATSim, with SAEV modeling as a new mode. Charging stations are placed, as needed, to serve all trips requested (under 75 km or 47 miles in length) over 30 days of initial model runs. Simulation of distinctive fleet sizes requiring different charge times and exhibiting different ranges, suggests that the number of station locations depends almost wholly on vehicle range. Reducing charge times does lower fleet response times (to trip requests), but increasing fleet size improves response times the most. Increasing range above 175 km (109 miles) does not appear to improve response times for this region and trips originating in the urban core are served the quickest. Unoccupied travel accounted for 19.6% of SAEV mileage on average, with driving to charging stations accounting for 31.5% of this empty-vehicle mileage. This study found that there appears to be a limit on how much response time can be improved through decreasing charge times or increasing vehicle range.  相似文献   

7.
This study provides a large-scale micro-simulation of transportation patterns in a metropolitan area when relying on a system of shared autonomous vehicles (SAVs). The six-county region of Austin, Texas is used for its land development patterns, demographics, networks, and trip tables. The agent-based MATSim toolkit allows modelers to track individual travelers and individual vehicles, with great temporal and spatial detail. MATSim’s algorithms help improve individual travel plans (by changing tour and trip start times, destinations, modes, and routes). Here, the SAV mode requests were simulated through a stochastic process for four possible fare levels: $0.50, $0.75, $1, and $1.25 per trip-mile. These fares resulted in mode splits of 50.9, 12.9, 10.5, and 9.2% of the region’s person-trips, respectively. Mode choice results show longer-distance travelers preferring SAVs to private, human-driven vehicles (HVs)—thanks to the reduced burden of SAV travel (since one does not have to drive the vehicle). For travelers whose households do not own an HV, SAVs (rather than transit, walking and biking) appear preferable for trips under 10 miles, which is the majority of those travelers’ trip-making. It may be difficult for traditional transit services and operators to survive once SAVs become available in regions like Austin, where dedicated rail lines and bus lanes are few. Simulation of SAV fleet operations suggest that higher fare rates allow for greater vehicle replacement (ranging from 5.6 to 7.7 HVs per SAV, assuming that the average SAV serves 17–20 person-trips per day); when fares rise, travel demands shift away from longer trip distances. Empty vehicle miles traveled by the fleet of SAVs ranged from 7.8 to 14.2%, across the scenarios in this study. Implications of mobility and sustainability benefits of SAVs are also discussed in the paper.  相似文献   

8.
The emergence of electric unmanned aerial vehicle (E-UAV) technologies, albeit somewhat futuristic, is anticipated to pose similar challenges to the system operation as those of electric vehicles (EVs). Notably, the charging of EVs en-route at charging stations has been recognized as a significant type of flexible load for power systems, which often imposes non-negligible impacts on the power system operator’s decisions on electricity prices. Meanwhile, the charging cost based on charging time and price is part of the trip cost for the users, which can affect the spatio-temporal assignment of E-UAV traffic to charging stations. This paper aims at investigating joint operations of coupled power and electric aviation transportation systems that are associated with en-route charging of E-UAVs in a centrally controlled and yet dynamic setting, i.e., with time-varying travel demand and power system base load. Dynamic E-UAV charging assignment is used as a tool to smooth the power system load. A joint pricing scheme is proposed and a cost minimization problem is formulated to achieve system optimality for such coupled systems. Numerical experiments are performed to test the proposed pricing scheme and demonstrate the benefits of the framework for joint operations.  相似文献   

9.
ABSTRACT

The benefits of autonomous vehicles (AVs) are widely acknowledged, but there are concerns about the extent of these benefits and AV risks and unintended consequences. In this article, we first examine AVs and different categories of the technological risks associated with them. We then explore strategies that can be adopted to address these risks, and explore emerging responses by governments for addressing AV risks. Our analyses reveal that, thus far, governments have in most instances avoided stringent measures in order to promote AV developments and the majority of responses are non-binding and focus on creating councils or working groups to better explore AV implications. The US has been active in introducing legislations to address issues related to privacy and cybersecurity. The UK and Germany, in particular, have enacted laws to address liability issues; other countries mostly acknowledge these issues, but have yet to implement specific strategies. To address privacy and cybersecurity risks strategies ranging from introduction or amendment of non-AV specific legislation to creating working groups have been adopted. Much less attention has been paid to issues such as environmental and employment risks, although a few governments have begun programmes to retrain workers who might be negatively affected.  相似文献   

10.
ABSTRACT

The advent of road transport automation is suggested to be one of four key technological transitions that could amount to a major transformation in mobility practices. Specifically, fully Automated Vehicles (AVs) might replace the current private car owner user model with fleets of on-demand synchronously-shared automated taxis. However, significant barriers to this vision becoming the norm remain. This paper examines two critical user-acceptance aspects of the transition: willingness to adopt AVs, and willingness to share an AV with others, particularly strangers. Our novel survey (n?=?899) included a choice experiment featuring four future full automation transport services (private, synchronously/asynchronously shared, and public). Cluster analysis examined respondents' preferences and their demographic and psycho-social characteristics. We uncover significant uncertainty about willingness to adopt automation and sharing, and important differences between clusters within our sample. For example, under 50% of participants report willingness to use an AV over their normal mode, or would prefer an automated option to a current human-driven option. Our findings raise critical questions for policymakers and transport authorities. Not least, how can AV technologies help realise the environmental and social benefits of widespread vehicle sharing in a context of a travelling public that still prefers its privacy on-the-move?  相似文献   

11.
Prior research has estimated the impact of an autonomous vehicle (AV) environment on the mobility of underserved populations such as adult non-drivers. What is currently unknown is the impact of AVs on enhancing the mobility of children who are also mobility disadvantaged, as child passengers are likely part of AV ridership scenarios in the perceivable future. To address this question, our study collected perceived benefits and concerns of AVs from a US convenience sample of parents whose children relied on them for mobility. We found that parents’ intentions to travel in AV and their technology readiness as well as parent (sex, residence area) and child (age, restraint system) demographic profiles were important determinants of potential AV acceptance and impact. In addition, two groups of potential AV users emerged from the data: the curious and the practical. This study addresses a gap in the literature by assessing parents’ perspectives on using AVs to transport children. The results have great potentials to guide the design of mobility features, safety evaluations, and implementation policies, as a decline in public interest in AVs has been recently documented.  相似文献   

12.
We study the problem of finding an optimal itinerary to travel from a starting location to a destination location using public transport, where we allow travelers to alternate rides with (short) walks. The main difference with previous research is that we take all possible walks that a traveler can make into consideration. This large number of possible walks poses a potential computational difficulty. However, in this paper we derive theorems for identifying a small subset of walks that only need to be considered. These results are embedded in a solution algorithm, which is tested in a real-life setting for bus transportation in a medium sized city. An extensive numerical study leads to encouraging results. First, only 1% of all possible walks needs to be considered, so that the optimal itinerary can be determined very efficiently. Second, allowing walks has considerable benefits; reducing the travel time in about 6% of all randomly generated examples by more than 10% on average.  相似文献   

13.
This paper introduces a fuzzy preference based model of route choice. The core of the model is FiPV (Fuzzy individuelle Präferenzen von Verkehrsteilnehmern or fuzzy traveler preferences), that is a choice function based on fuzzy preference relations for travel decisions. The proposed model may be the first application of fuzzy individual choice in traffic assignment and probably also the first in this class to consider the spatial knowledge of individual travelers. It is argued that travelers do not or cannot always follow the maximization principle. Therefore we formulate a model that also takes into account the travelers with non-maximizing behavior. The model is based on fuzzy preference relations, of which elements are fuzzy pairwise comparisons between the available alternatives.  相似文献   

14.
Autonomous vehicles (AVs) are expected to act as an economically-disruptive transportation technology offering several benefits to the society and causing significant changes in travel behavior and network performance. However, one of the critical issues that policymakers are facing is the absence of a sound estimation of their market penetration. This study is an effort to quantify the effect of different drivers on the adoption timing of AVs. To this end, we develop an innovation diffusion model in which individuals’ propensities to adopt a new technology such as AVs takes influence from a desire to innovate and a need to imitate the rest of the society. It also captures various sources of inter-personal heterogeneity. We found that conditional on our assumptions regarding the changes in market price of AVs over time, their market penetration in our study region (Chicago metropolitan area) will eventually reach 71.3%. Further, model estimation results show that a wide range of socio-demographic factors, travel pattern indicators, technology awareness, and perceptions of AVs are influential in people’s AV adoption timing decision. For instance, frequent long-distance travelers are found to make the adoption decision more innovatively while those who have experienced an accident in their lifetime are found to be more influenced by word of mouth.  相似文献   

15.
In recent years, increasing attention has been drawn to the development of various applications of intelligent transportation systems (ITS), which are credited with the amelioration of traffic conditions in urban and regional environments. Advanced traveler information systems (ATIS) constitute an important element of ITS by providing potential travelers with information on the network's current performance both en-route and pre-trip. In order to tackle the complexity of such systems, derived from the difficulty of providing real-time estimations of current as well as forecasts of future traffic conditions, a series of models and algorithms have been initiated. This paper proposes the development of an integrated framework for real-time ATIS and presents its application on a large-scale network, that of Thessaloniki, Greece, concluding with a discussion on development and implementation challenges as well as on the advantages and limitations of such an effort.  相似文献   

16.
This paper presents a methodological framework to identify population-wide traveler type distribution and simultaneously infer individual travelers’ Origin-Destination (OD) pairs, based on the individual records of a shared mobility (bike) system use in a multimodal travel environment. Given the information about the travelers’ outbound and inbound bike stations under varied price settings, the developed Selective Set Expectation Maximization (SSEM) algorithm infers an underlying distribution of travelers over the given traveler “types,” or “classes,” treating each traveler’s OD pair as a latent variable; the inferred most likely traveler type for each traveler then informs their most likely OD pair. The experimental results based on simulated data demonstrate high SSEM learning accuracy both on the aggregate and dissagregate levels.  相似文献   

17.
This paper develops a mathematical approach to optimize a time-dependent deployment plan of autonomous vehicle (AV) lanes on a transportation network with heterogeneous traffic stream consisting of both conventional vehicles (CVs) and AVs, so as to minimize the social cost and promote the adoption of AVs. Specifically, AV lanes are exclusive lanes that can only be utilized by AVs, and the deployment plan specifies when, where, and how many AV lanes to be deployed. We first present a multi-class network equilibrium model to describe the flow distributions of both CVs and AVs, given the presence of AV lanes in the network. Considering that the net benefit (e.g., reduced travel cost) derived from the deployment of AV lanes will further promote the AV adoption, we proceed to apply a diffusion model to forecast the evolution of AV market penetration. With the equilibrium model and diffusion model, a time-dependent deployment model is then formulated, which can be solved by an efficient solution algorithm. Lastly, numerical examples based on the south Florida network are presented to demonstrate the proposed models.  相似文献   

18.
Suppose that in an urban transportation network there is a specific advanced traveler information system (ATIS) which acts for reducing the drivers' travel time uncertainty through provision of pre‐trip route information. Because of the imperfect information provided, some travelers are not in compliance with the ATIS advice although equipped with the device. We thus divide all travelers into three groups, one group unequipped with ATIS, another group equipped and in compliance with ATIS advice and the third group equipped but without compliance with the advice. Each traveler makes route choice in a logit‐based manner and a stochastic user equilibrium with multiple user classes is reached for every day. In this paper, we propose a model to investigate the evolutions of daily path travel time, daily ATIS compliance rate and yearly ATIS adoption, in which the equilibrium for every day's route choice is kept. The stability of the evolution model is initially analyzed. Numerical results obtained from a test network are presented for demonstrating the model's ability in depicting the day‐to‐day and year‐to‐year evolutions.  相似文献   

19.
We consider the resource allocation problem with discrete random demands and discrete random resource capacities for standardized cargo transportation networks, in which a freight operator needs to determine the integral quantity of booking requests to be accepted for each product to maximize the expected profit. We formulate the problem as a stochastic integer programming model and provide theoretical results that completely characterize the optimal solution to the stochastic model under a special case. We present a progressive augmentation algorithm and a sampling based method for solving the stochastic model under a general case. We also offer numerical experiments to test the two methods and shed light on their performances.  相似文献   

20.
We study the shared autonomous vehicle (SAV) routing problem while considering congestion. SAVs essentially provide a dial-a-ride service to travelers, but the large number of vehicles involved (tens of thousands of SAVs to replace personal vehicles) results in SAV routing causing significant congestion. We combine the dial-a-ride service constraints with the linear program for system optimal dynamic traffic assignment, resulting in a congestion-aware formulation of the SAV routing problem. Traffic flow is modeled through the link transmission model, an approximate solution to the kinematic wave theory of traffic flow. SAVs interact with travelers at origins and destinations. Due to the large number of vehicles involved, we use a continuous approximation of flow to formulate a linear program. Optimal solutions demonstrate that peak hour demand is likely to have greater waiting and in-vehicle travel times than off-peak demand due to congestion. SAV travel times were only slightly greater than system optimal personal vehicle route choice. In addition, solutions can determine the optimal fleet size to minimize congestion or maximize service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号