首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The paper evaluates the effectiveness of various traffic calming measures from the perspectives of traffic performance and safety, and environmental and public health impacts. The proposed framework was applied to four calming measures – two types of speed humps, speed tables, and chicanes – to demonstrate its usefulness and applicability. A field experiment using probe vehicles equipped with global positioning system devices was conducted to obtain vehicle trajectory data for use in more realistic simulations. In addition, a recently developed vehicle emissions model was used for more accurate evaluation of environmental and public health impacts. The results show that chicane is better than the other types of traffic calming measures considered, except in terms of vehicle emissions.  相似文献   

2.
    
Driver inattentiveness is one of critical factors contributing to vehicle crashes. The inter-vehicle safety warning information system (ISWS) is a technology to enhance driver attentiveness by providing warning messages about upcoming hazards using connected vehicle environments. A novel feature of the proposed ISWS is its ability to detect hazardous driving events, such as abrupt accelerations and lane changes, which are defined as moving hazards with a higher potential of causing crashes. This study evaluated the effectiveness of the ISWS in reducing vehicle emissions and its potential for traffic congestion mitigation. This study included a field experiment that documented actual vehicle maneuvering patterns for abrupt accelerations and lane changes, which were used for more realistic simulation evaluations, in addition to normal accelerations and lane changes. Probe vehicles equipped with customized on-board units consisting of a global positioning system (GPS) device, accelerometer, and gyro sensor were used to obtain the vehicle maneuvering data. A microscopic simulator, VISSIM, was used to simulate a driver’s responsive behavior when warning messages were delivered. A motor vehicle emission simulator (MOVES) was then used to estimate vehicle emissions. The results show that reduction in vehicle emissions increased when the ISWS’s market penetration rate (MPR) and the congestion level of the traffic conditions increased. The maximum CO and CO2 emission reductions achieved were approximately 6% and 7%, respectively, under LOS D traffic conditions. The outcomes of this study can be valuable for deriving smarter operational strategies for ISWS to account for environmental impacts.  相似文献   

3.
    
This paper presents a thorough microscopic simulation investigation of a recently proposed methodology for highway traffic estimation with mixed traffic, i.e., traffic comprising both connected and conventional vehicles, which employs only speed measurements stemming from connected vehicles and a limited number (sufficient to guarantee observability) of flow measurements from spot sensors. The estimation scheme is tested using the commercial traffic simulator Aimsun under various penetration rates of connected vehicles, employing a traffic scenario that features congested as well as free-flow conditions. The case of mixed traffic comprising conventional and connected vehicles equipped with adaptive cruise control, which feature a systematically different car-following behavior than regular vehicles, is also considered. In both cases, it is demonstrated that the estimation results are satisfactory, even for low penetration rates.  相似文献   

4.
    
Accurate estimation of travel time is critical to the success of advanced traffic management systems and advanced traveler information systems. Travel time estimation also provides basic data support for travel time reliability research, which is being recognized as an important performance measure of the transportation system. This paper investigates a number of methods to address the three major issues associated with travel time estimation from point traffic detector data: data filling for missing or error data, speed transformation from time‐mean speed to space‐mean speed, and travel time estimation that converts the speeds recorded at detector locations to travel time along the highway segment. The case study results show that the spatial and temporal interpolation of missing data and the transformation to space‐mean speed improve the accuracy of the estimates of travel time. The results also indicate that the piecewise constant‐acceleration‐based method developed in this study and the average speed method produce better results than the other three methods proposed in previous studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Fuel consumption or pollutant emissions can be assessed by coupling a microscopic traffic flow model with an instantaneous emission model. Traffic models are usually calibrated using goodness of fit indicators related to the traffic behavior. Thus, this paper investigates how such a calibration influences the accuracy of fuel consumption and NOx and PM estimations. Two traffic models are investigated: Newell and Gipps. It appears that the Gipps model provides the closest simulated trajectories when compared to real ones. Interestingly, a reverse ranking is observed for fuel consumption, NOx and PM emissions. For both models, the emissions of single vehicles are very sensitive to the calibration. This is confirmed by a global sensitivity analysis of the Gipps model that shows that non-optimal parameters significantly increase the variance of the outputs. Fortunately, this is no longer the case when emissions are calculated for a group of many vehicles. Indeed, the mean errors for platoons are close to 10% for the Gipps model and always lower than 4% for the Newell model. Another interesting property is that optimal parameters for each vehicle can be replaced by the mean values with no discrepancy for the Newell model and low discrepancies for the Gipps model when calculating the different emission outputs. Finally, this study presents preliminary results that show that multi-objective calibration methods are certainly the best direction for future works on the Gipps model. Indeed, the accuracy of vehicle emissions can be highly improved with negligible counterparts on the traffic model accuracy.  相似文献   

6.
This paper questions the relevance of microscopic traffic models for estimating the impact of traffic strategies on fuel consumption. Urban driving cycles from the ARTEMIS database are simplified into piecewise linear speed profiles to mimic the classical outputs of microscopic traffic flow models. Fuel consumption is estimated for real and simplified trajectories and links between kinematics and the fuel consumption errors are investigated. Simplifying trajectories causes fuel consumption underestimation, from −1.2 to −5.2% on average according to the level of simplification; errors can approach −20% for some cycles. A focus on kinematic phases indicates that the maximum speed reached and the time decelerating are the main influences on fuel consumption. Finally, in the case where maximum speeds are estimated correctly, it is shown that errors committed at each kinematic phase when acceleration distributions are approximated by their mean values, converge towards small errors over complete cycles. A method is developed to quantify and reduce these errors.  相似文献   

7.
  总被引:2,自引:0,他引:2  
This paper introduces Simulation of Intelligent TRAnsport Systems (SITRAS), a massive multi-agent simulation system in which driver-vehicle objects are modelled as autonomous agents. The simulation outputs can be used for the evaluation of Intelligent Transport Systems applications such as congestion and incident management, public transport priority and dynamic route guidance. The model concepts and specifications, and the first applications of the model in the area of incident modelling in urban arterial networks were described in previous publications. This paper presents the details of the lane changing and merging algorithms developed for the SITRAS model. These models incorporate procedures for ‘forced’ and ‘co-operative’ lane changing which are essential for lane changing under congested (and incident-affected) traffic conditions. The paper describes the algorithms and presents simulation examples to demonstrate the effects of the implemented models. The results indicate that only the forced and cooperative lane changing models can produce realistic flow-speed relationships during congested conditions.  相似文献   

8.
9.
    
Pavements were instrumented with inertial sensors, and the possibility of estimating the speed of a passing vehicle was investigated numerically and experimentally from the measurements of two embedded accelerometers. The sensors were spaced apart in the travel direction, and subsequently the speed was directly related to the time delay between the received signals. No assumption was made regarding the vehicle and pavement properties. Model accelerations were presented, studied, and contrasted against field measurements; the latter were shown to be dominated by random vibration sources. Two calculation techniques were offered and applied to handle the noisy data. The first was based on time-centroids, and the second was based on cross-correlation with kernel presmoothing. The overall concept is deemed promising not only for inferring speeds but also for extracting additional traffic characteristics such as axle spacing and relative axle load distributions.  相似文献   

10.
Vehicle time headway is an important traffic parameter. It affects roadway safety, capacity, and level of service. Single inductive loop detectors are widely deployed in road networks, supplying a wealth of information on the current status of traffic flow. In this paper, we perform Bayesian analysis to online estimate average vehicle time headway using the data collected from a single inductive loop detector. We consider three different scenarios, i.e. light, congested, and disturbed traffic conditions, and have developed a set of unified recursive estimation equations that can be applied to all three scenarios. The computational overhead of updating the estimate is kept to a minimum. The developed recursive method provides an efficient way for the online monitoring of roadway safety and level of service. The method is illustrated using a simulation study and real traffic data.  相似文献   

11.
Limited pedestrian behavior models shed light on the case at signalized crosswalk, where pedestrian behavior is characterized by group or individual evasion with surrounding pedestrians, collision avoidance with conflicting vehicles, and response to signal control and crosswalk boundary. This study fills this gap by developing a microscopic simulation model for pedestrian behavior analysis at signalized intersection. The social force theory has been employed and adjusted for this purpose. The parameters, including measurable and non-measurable ones, are either directly estimated based on observed dataset or indirectly derived by maximum likelihood estimation. Last, the model performance was confirmed in light of individual trajectory comparison between estimation and observation, passing position distribution at several cross-sections, collision avoidance behavior with conflicting vehicles, and lane-formation phenomenon. The simulation results also concluded that the model enables to visually represent pedestrian crossing behavior as in the real world.  相似文献   

12.
    
The development and calibration of complex traffic models demands parsimonious techniques, because such models often involve hundreds of thousands of unknown parameters. The Weighted Simultaneous Perturbation Stochastic Approximation (W-SPSA) algorithm has been proven more efficient than its predecessor SPSA (Spall, 1998), particularly in situations where the correlation structure of the variables is not homogeneous. This is crucial in traffic simulation models where effectively some variables (e.g. readings from certain sensors) are strongly correlated, both in time and space, with some other variables (e.g. certain OD flows). In situations with reasonably sized traffic networks, the difference is relevant considering computational constraints. However, W-SPSA relies on determining a proper weight matrix (W) that represents those correlations, and such a process has been so far an open problem, and only heuristic approaches to obtain it have been considered.This paper presents W-SPSA in a formally comprehensive way, where effectively SPSA becomes an instance of W-SPSA, and explores alternative approaches for determining the matrix W. We demonstrate that, relying on a few simplifications that marginally affect the final solution, we can obtain W matrices that considerably outperform SPSA. We analyse the performance of our proposed algorithm in two applications in motorway networks in Singapore and Portugal, using a dynamic traffic assignment model and a microscopic traffic simulator, respectively.  相似文献   

13.
    
Abstract

This paper reviews the main modules of an integrated system for incident management in real-time, -sim. A core to such a system is a microscopic simulator with extended abilities to model the temporal and spatial evolution of specified non-recurrent traffic conditions. The paper reviews the mathematical formulation of the car-following and lane-changing modules. The model is validated using a simulation-based approach. Concluding comments on the general validation process of the model are provided. The paper finally presents a sample of the accident patterns replicated by the model together with their implications for real world validation.  相似文献   

14.
    
This paper proposes a combined usage of microscopic traffic simulation and Extreme Value Theory (EVT) for safety evaluation. Ten urban intersections in Fengxian District in Shanghai were selected in the study and three calibration strategies were applied to develop simulation models for each intersection: a base strategy with fundamental data input, a semi-calibration strategy adjusting driver behavior parameters based on Measures of Effectiveness (MOE), and a full-calibration strategy altering driver behavior parameters by both MOE and Measures of Safety (MOS). SSAM was used to extract simulated conflict data from vehicle trajectory files from VISSIM and video-based data collection was introduced to assist trained observers to collect field conflict data. EVT-based methods were then employed to model both simulated/field conflict data and derive the Estimated Annual Crash Frequency (EACF), used as Surrogate Safety Measures (SSM). PET was used for EVT measurement for three conflict types: crossing, rear-end, and lane change. EACFs based on three simulation calibration strategies were compared with field-based EACF, conventional SSM based on Traffic Conflict Techniques (TCT), and actual crash frequency, in terms of direct correlation, rank correlation, and prediction accuracy. The results showed that, MOS should be considered during simulation model calibration and EACF based on the full-calibration strategy appeared to be a better choice for simulation-based safety evaluation, compared to other candidate safety measures. In general, the combined usage of microscopic traffic simulation and EVT is a promising tool for safety evaluation.  相似文献   

15.
    
A Model Predictive Control (MPC) strategy for motorway traffic management, which takes into account both conventional control measures and control actions executed by vehicles equipped with Vehicle Automation and Communication Systems (VACS), is presented and evaluated using microscopic traffic simulation. A stretch of the motorway A20, which connects Rotterdam to Gouda in the Netherlands, is taken as a realistic test bed. In order to ensure the reliability of the application results, extensive speed and flow measurements, collected from the field, are used to calibrate the site’s microscopic traffic simulation model. The efficiency of the MPC framework, applied to this real sizable and complex network under realistic traffic conditions, is examined for different traffic conditions and different penetration rates of equipped vehicles. The adequacy of the control application when only VACS equipped vehicles are used as actuators, is also considered, and the related findings underline the significance of conventional control measures during a transition period or in case of increased future demand.  相似文献   

16.
    
After first extending Newell’s car-following model to incorporate time-dependent parameters, this paper describes the Dynamic Time Warping (DTW) algorithm and its application for calibrating this microscopic simulation model by synthesizing driver trajectory data. Using the unique capabilities of the DTW algorithm, this paper attempts to examine driver heterogeneity in car-following behavior, as well as the driver’s heterogeneous situation-dependent behavior within a trip, based on the calibrated time-varying response times and critical jam spacing. The standard DTW algorithm is enhanced to address a number of estimation challenges in this specific application, and a numerical experiment is presented with vehicle trajectory data extracted from the Next Generation Simulation (NGSIM) project for demonstration purposes. The DTW algorithm is shown to be a reasonable method for processing large vehicle trajectory datasets, but requires significant data reduction to produce reasonable results when working with high resolution vehicle trajectory data. Additionally, singularities present an interesting match solution set to potentially help identify changing driver behavior; however, they must be avoided to reduce analysis complexity.  相似文献   

17.
Trajectories drawn in a common reference system by all the vehicles on a road are the ultimate empirical data to investigate traffic dynamics. The vast amount of such data made freely available by the Next Generation SIMulation (NGSIM) program is therefore opening up new horizons in studying traffic flow theory. Yet the quality of trajectory data and its impact on the reliability of related studies was a vastly underestimated problem in the traffic literature even before the availability of NGSIM data. The absence of established methods to assess data accuracy and even of a common understanding of the problem makes it hard to speak of reproducibility of experiments and objective comparison of results, in particular in a research field where the complexity of human behaviour is an intrinsic challenge to the scientific method. Therefore this paper intends to design quantitative methods to inspect trajectory data. To this aim first the structure of the error on point measurements and its propagation on the space travelled are investigated. Analytical evidence of the bias propagated in the vehicle trajectory functions and a related consistency requirement are given. Literature on estimation/filtering techniques is then reviewed in light of this requirement and a number of error statistics suitable to inspect trajectory data are proposed. The designed methodology, involving jerk analysis, consistency analysis and spectral analysis, is then applied to the complete set of NGSIM databases.  相似文献   

18.
    
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

19.
    
This paper presents the methodology and results from a study to extract empirical microscopic vehicular interactions from a probe vehicle instrumented with sensors to monitor the ambient vehicles as it traverses a 28 mi long freeway corridor. The contributions of this paper are two fold: first, the general method and approach to seek a cost-effective balance between automation and manual data reduction that transcends the specific application. Second, the resulting empirical data set is intended to help advance traffic flow theory in general and car following models in particular. Generally the collection of empirical microscopic vehicle interaction data is either too computationally intensive or labor intensive. Historically automatic data extraction does not provide the precision necessary to advance traffic flow theory, while the labor demands of manual data extraction have limited past efforts to small scales. Key to the present study is striking the right balance between automatic and manual processing. Recognizing that any empirical microscopic data for traffic flow theory has to be manually validated anyway, the present study uses a “pretty good” automated processing algorithm followed by detailed manual cleanup using an efficient user interface to rapidly process the data. The study spans roughly two hours of data collected on a freeway during the afternoon peak of a typical weekday that includes recurring congestion. The corresponding data are being made available to the research community to help advance traffic flow theory in general and car following models in particular.  相似文献   

20.
    
This paper focuses on the problem of estimating historical traffic volumes between sparsely-located traffic sensors, which transportation agencies need to accurately compute statewide performance measures. To this end, the paper examines applications of vehicle probe data, automatic traffic recorder counts, and neural network models to estimate hourly volumes in the Maryland highway network, and proposes a novel approach that combines neural networks with an existing profiling method. On average, the proposed approach yields 24% more accurate estimates than volume profiles, which are currently used by transportation agencies across the US to compute statewide performance measures. The paper also quantifies the value of using vehicle probe data in estimating hourly traffic volumes, which provides important managerial insights to transportation agencies interested in acquiring this type of data. For example, results show that volumes can be estimated with a mean absolute percent error of about 21% at locations where average number of observed probes is between 30 and 47 vehicles/h, which provides a useful guideline for assessing the value of probe vehicle data from different vendors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号