共查询到2条相似文献,搜索用时 0 毫秒
1.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy. 相似文献
2.
This study develops a car‐following model in which heavy vehicle behaviour is predicted separately from passenger car. Heavy vehicles have different characteristics and manoeuvrability compared with passenger cars. These differences could create problems in freeway operations and safety under congested traffic conditions (level of service E and F) particularly when there is high proportion of heavy vehicles. With increasing numbers of heavy vehicles in the traffic stream, model estimates of the traffic flow could be degrades because existing car‐following models do not differentiate between these vehicles and passenger cars. This study highlighted some of the differences in car‐following behaviour of heavy vehicle and passenger drivers and developed a model considering heavy vehicles. In this model, the local linear model tree approach was used to incorporate human perceptual imperfections into a car‐following model. Three different real world data sets from a stretch of freeway in USA were used in this study. Two of them were used for the training and testing of the model, and one of them was used for evaluation purpose. The performance of the model was compared with a number of existing car‐following models. The results showed that the model, which considers the heavy vehicle type, could predict car‐following behaviour of drivers better than the existing models. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献