首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In practice, a train-conflict resolution is decentralized around dispatchers each of whom controls a few segments in a global railway network with her rule-of-thumb to operational data. Conceptually, the global sub-optimality or infeasibility of the decentralized system is resolved by a network controller who coordinates the dispatchers and train operators at the lower layers on a real-time basis. However, such notion of a multi-layer system cannot be effectual unless the top layer is able to provide a global solution soon enough for the dynamic lower layers to adapt in a seamless manner. Unfortunately, a train-conflict resolution problem is NP-hard as formally established in this paper and an effective solution method traded off between computation time and solution quality has been lacking in literature. Thus, we propose a column-generation-based algorithm that exploits the separability of the problem. A key ingredient of the algorithm is an efficient heuristic for the pricing subproblem for column generation. Tested on the real data from the Seoul metropolitan railway network, the algorithm provides near-optimal conflict-free timetables in a few seconds for most cases. The performance of the proposed algorithm is compared to the ones of the previous MIP-based heuristic by Törnquist and Persson (2007) and the priority-based heuristic by Sahin (1999).  相似文献   

2.
Applications of dynamic network equilibrium models have, mostly, considered the unit of traffic demand either as one-way trip, or as multiple independent trips. However, individuals’ travel patterns typically follow a sequence of trips chained together. In this study we aim at developing a general simulation-based dynamic network equilibrium algorithm for assignment of activity-trip chain demand. The trip chain of each individual trip maker is defined by the departure time at origin, sequence of activity destination locations, including the location of their intermediate destinations and their final destination, and activity duration at each of the intermediate destinations. Spatial and temporal dependency of subsequent trips on each other necessitate time and memory consuming calculations and storage of node-to-node time-dependent least generalized cost path trees, which is not practical for very large metropolitan area networks. We first propose a reformulation of the trip-based demand gap function formulation for the variational inequality formulation of the Bi-criterion Dynamic User Equilibrium (BDUE) problem. Next, we propose a solution algorithm for solving the BDUE problem with daily chain of activity-trips. Implementation of the algorithm for very large networks circumvents the need to store memory-intensive node-to-node time-dependent shortest path trees by implementing a destination-based time-dependent least generalized cost path finding algorithm, while maintaining the spatial and temporal dependency of subsequent trips. Numerical results for a real-world large scale network suggest that recognizing the dependency of multiple trips of a chain, and maintaining the departure time consistency of subsequent trips provide sharper drops in gap values, hence, the convergence could be achieved faster (compared to when trips are considered independent of each other).  相似文献   

3.
4.
ABSTRACT

Identifying the spatial distribution of travel activities can help public transportation managers optimize the allocation of resources. In this paper, transit networks are constructed based on traffic flow data rather than network topologies. The PageRank algorithm and community detection method are combined to identify the spatial distribution of public transportation trips. The structural centrality and PageRank values are compared to identify hub stations; the community detection method is applied to reveal the community structures. A case study in Guangzhou, China is presented. It is found that the bus network has a community structure, significant weekday commuting and small-world characteristics. The metro network is tightly connected, highly loaded, and has no obvious community structure. Hub stations show distinct differences in terms of volume and weekend/weekday usage. The results imply that the proposed method can be used to identify the spatial distribution of urban public transportation and provide a new study perspective.  相似文献   

5.
Urban travel demand, consisting of thousands or millions of origin–destination trips, can be viewed as a large-scale weighted directed graph. The paper applies a complex network-motivated approach to understand and characterize urban travel demand patterns through analysis of statistical properties of origin–destination demand networks. We compare selected network characteristics of travel demand patterns in two cities, presenting a comparative network-theoretic analysis of Chicago and Melbourne. The proposed approach develops an interdisciplinary and quantitative framework to understand mobility characteristics in urban areas. The paper explores statistical properties of the complex weighted network of urban trips of the selected cities. We show that travel demand networks exhibit similar properties despite their differences in topography and urban structure. Results provide a quantitative characterization of the network structure of origin–destination demand in cities, suggesting that the underlying dynamical processes in travel demand networks are similar and evolved by the distribution of activities and interaction between places in cities.  相似文献   

6.
Aggregated network level modeling and control of traffic in urban networks have recently gained a lot of interest due to unpredictability of travel behaviors and high complexity of physical modeling in microscopic level. Recent research has shown the existence of well-defined Macroscopic Fundamental Diagrams (MFDs) relating average flow and density in homogeneous networks. The concept of MFD allows to design real-time traffic control schemes specifically hierarchical perimeter control approaches to alleviate or postpone congestion. Considering the fact that congestion is spatially correlated in adjacent roads and it propagates spatiotemporaly with finite speed, describing the main pockets of congestion in a heterogeneous city with small number of clusters is conceivable. In this paper, we propose a three-step clustering algorithm to partition heterogeneous networks into connected homogeneous regions, which makes the application of perimeter control feasible. The advantages of the proposed method compared to the existing ones are the ability of finding directional congestion within a cluster, robustness with respect to parameters calibration, and its good performance for networks with low connectivity and missing data. Firstly, we start to find a connected homogeneous area around each road of the network in an iterative way (i.e. it forms a sequence of roads). Each sequence of roads, defined as ‘snake’, is built by starting from a single road and iteratively adding one adjacent road based on its similarity to join previously added roads in that sequence. Secondly, based on the obtained sequences from the first step, a similarity measure is defined between each pair of the roads in the network. The similarities are computed in a way that put more weight on neighboring roads and facilitate connectivity of the clusters. Finally, Symmetric Non-negative Matrix Factorization (SNMF) framework is utilized to assign roads to proper clusters with high intra-similarity and low inter-similarity. SNMF partitions the data by providing a lower rank approximation of the similarity matrix. The proposed clustering framework is applied in medium and large-size networks based on micro-simulation and empirical data from probe vehicles. In addition, the extension of the algorithm is proposed to deal with the networks with sparse measurements where information of some links is missing. The results show the effectiveness and robustness of the extended algorithm applied to simulated network under different penetration rates (percentage of links with data).  相似文献   

7.
A new convex optimization framework is developed for the route flow estimation problem from the fusion of vehicle count and cellular network data. The issue of highly underdetermined link flow based methods in transportation networks is investigated, then solved using the proposed concept of cellpaths for cellular network data. With this data-driven approach, our proposed approach is versatile: it is compatible with other data sources, and it is model agnostic and thus compatible with user equilibrium, system-optimum, Stackelberg concepts, and other models. Using a dimensionality reduction scheme, we design a projected gradient algorithm suitable for the proposed route flow estimation problem. The algorithm solves a block isotonic regression problem in the projection step in linear time. The accuracy, computational efficiency, and versatility of the proposed approach are validated on the I-210 corridor near Los Angeles, where we achieve 90% route flow accuracy with 1033 traffic sensors and 1000 cellular towers covering a large network of highways and arterials with more than 20,000 links. In contrast to long-term land use planning applications, we demonstrate the first system to our knowledge that can produce route-level flow estimates suitable for short time horizon prediction and control applications in traffic management. Our system is open source and available for validation and extension.  相似文献   

8.
This paper studies the transit network scheduling problem and aims to minimize the waiting time at transfer stations. First, the problem is formulated as a mixed integer programming model that gives the departure times of vehicles in lines so that passengers can transfer between lines at transfer stations with minimum waiting times. Then, the model is expanded to a second model by considering the extra stopping time of vehicles at transfer stations as a new variable set. By calculating the optimal values for these variables, transfers can be better performed. The sizes of the models, compared with the existing models, are small enough that the models can be solved for small- and medium-sized networks using regular MIP solvers, such as CPLEX. Moreover, a genetic algorithm approach is represented to more easily solve larger networks. A simple network is used to describe the models, and a medium-sized, real-life network is used to compare the proposed models with another existing model in the literature. The results demonstrate significant improvement. Finally, a large-scale, real-life network is used as a case study to evaluate the proposed models and the genetic algorithm approach.  相似文献   

9.
This paper proposes an alternative algorithm to solve the median shortest path problem (MSPP) in the planning and design of urban transportation networks. The proposed vector labeling algorithm is based on the labeling of each node in terms of a multiple and conflicting vector of objectives which deletes cyclic, infeasible and extreme-dominated paths in the criteria space imposing cyclic break (CB), path cost constraint (PCC) and access cost parameter (ACP) respectively. The output of the algorithm is a set of Pareto optimal paths (POP) with an objective vector from predetermined origin to destination nodes. Thus, this paper formulates an algorithm to identify a non-inferior solution set of POP based on a non-dominated set of objective vectors that leaves the ultimate decision to decision-makers. A numerical experiment is conducted using an artificial transportation network in order to validate and compare results. Sensitivity analysis has shown that the proposed algorithm is more efficient and advantageous over existing solutions in terms of computing execution time and memory space used.  相似文献   

10.
A nonlinear model-predictive hierarchical control approach is presented for coordinated ramp metering of freeway networks. The utilized hierarchical structure consists of three layers: the estimation/prediction layer, the optimization layer and the direct control layer. The previously designed optimal control tool AMOC (Advanced Motorway Optimal Control) is incorporated in the second layer while the local feedback control strategy ALINEA is used in the third layer. Simulation results are presented for the Amsterdam ring-road. The proposed approach outperforms uncoordinated local ramp metering and its efficiency approaches the one obtained by an optimal open-loop solution. It is demonstrated that metering of all on-ramps, including freeway-to-freeway intersections, with sufficient ramp storage space leads to the optimal utilization of the available infrastructure.  相似文献   

11.
A promising framework that describes traffic conditions in urban networks is the macroscopic fundamental diagram (MFD), relating average flow and average density in a relatively homogeneous urban network. It has been shown that the MFD can be used, for example, for traffic access control. However, an implementation requires an accurate estimation of the MFD with the available data sources.Most scientific literature has considered the estimation of MFDs based on either loop detector data (LDD) or floating car data (FCD). In this paper, however, we propose a methodology for estimating the MFD based on both data sources simultaneously. To that end, we have defined a fusion algorithm that separates the urban network into two sub-networks, one with loop detectors and one without. The LDD and the FCD are then fused taking into account the accuracy and network coverage of each data type. Simulations of an abstract grid network and the network of the city of Zurich show that the fusion algorithm always reduces the estimation error significantly with respect to an estimation where only one data source is used. This holds true, even when we account for the fact that the probe penetration rate of FCD needs to be estimated with loop detectors, hence it might also include some errors depending on the number of loop detectors, especially when probe vehicles are not homogeneously distributed within the network.  相似文献   

12.
In this paper we use simulation to analyze how flight routing network structure may change in different world regions, and how this might impact future traffic growth and emissions. We compare models of the domestic Indian and US air transportation systems, representing developing and mature air transportation systems respectively. We explicitly model passenger and airline decision-making, capturing passenger demand effects and airline operational responses, including airline network change. The models are applied to simulate air transportation system growth for networks of 49 airports in each country from 2005 to 2050. In India, the percentage of connecting passengers simulated decreases significantly (from over 40% in 2005 to under 10% in 2050), indicating that a shift in network structure towards increased point-to-point routing can be expected. In contrast, very little network change is simulated for the US airport set modeled. The simulated impact of network change on system CO2 emissions is very small, although in the case of India it could enable a large increase in demand, and therefore a significant reduction in emissions per passenger (by nearly 25%). NOx emissions at major hub airports are also estimated, and could initially reduce relative to a case in which network change is not simulated (by nearly 25% in the case of Mumbai in 2025). This effect, however, is significantly reduced by 2050 because of frequency competition effects. We conclude that network effects are important when estimating CO2 emissions per passenger and local air quality effects at hub airports in developing air transportation systems.  相似文献   

13.
Agent-based micro-simulation models require a complete list of agents with detailed demographic/socioeconomic information for the purpose of behavior modeling and simulation. This paper introduces a new alternative for population synthesis based on Bayesian networks. A Bayesian network is a graphical representation of a joint probability distribution, encoding probabilistic relationships among a set of variables in an efficient way. Similar to the previously developed probabilistic approach, in this paper, we consider the population synthesis problem to be the inference of a joint probability distribution. In this sense, the Bayesian network model becomes an efficient tool that allows us to compactly represent/reproduce the structure of the population system and preserve privacy and confidentiality in the meanwhile. We demonstrate and assess the performance of this approach in generating synthetic population for Singapore, by using the Household Interview Travel Survey (HITS) data as the known test population. Our results show that the introduced Bayesian network approach is powerful in characterizing the underlying joint distribution, and meanwhile the overfitting of data can be avoided as much as possible.  相似文献   

14.
This paper presents an application of the wavelet technique to freeway incident detection because wavelet techniques have demonstrated superior performance in detecting changes in signals in electrical engineering. Unlike the existing wavelet incident detection algorithm, where the wavelet technique is utilized to denoise data before the data is input into an algorithm, this paper presents a different approach in the application of the wavelet technique to incident detection. In this approach, the features that are extracted from traffic measurements by using wavelet transformation are directly utilized in detecting changes in traffic flow. It is shown in the paper that the extracted features from traffic measurements in incident conditions are significantly different from those in normal conditions. This characteristic of the wavelet technique was used in developing the wavelet incident detection algorithm in this study. The algorithm was evaluated in comparison with the multi-layer feed-forward neural network, probabilistic neural network, radial basis function neural network, California and low-pass filtering algorithms. The test results indicate that the wavelet incident detection algorithm performs better than other algorithms, demonstrating its potential for practical application.  相似文献   

15.
Despite the importance of assessing the reliability of transport networks in general there is a paucity of suitable techniques. In part this is due to the fact that network performance depends both on the state of the infrastructure and on the behaviour of network users, where user behaviour is governed by expectations about the state of the network. An approach based on game theory is proposed whereby the performance of the network is estimated for the case where network users are extremely pessimistic about the state of the network. Where the routes are prespecified and route utilities depend only on exogenously given scenarios, the estimation problem may be formulated as a linear program. A reformulation of the problem as a non-linear program allows the impact of the degree of user pessimism on expected network utility to be studied. The problems of implementing the method for large networks with multiple origins and destinations is discussed and an algorithm is proposed.  相似文献   

16.
In this study we proceeded to test the relative efficiencies of the two main computational techniques now available for calculating the traffic equilibrium in multimodal networks, namely, the relaxation and projection methods. Since both of these methods solve at each step a mathematical programming problem, we first set out to test the Frank-Wolfe algorithm and the Dafermos-Sparrow algorithm and found the latter to be the more efficient algorithm. As expected, this was also the case when these algorithms were used to solve the mathematical programming problem at each step of the relaxation method. We then investigated how different versions of the projection method enhance its performance. Subsequently, we proceeded to our main goal to compare the best projection method with the relaxation method. We tested multimodal networks with three different classes of monotone travel cost functions and found that the form of the travel cost functions affects the performance of the two basic techniques available for computing the multimodal equilibrium.  相似文献   

17.
We develop two stage fixed-effects single-spill and double-spill models for congestion connection spills of London Heathrow and Frankfurt airports on 9 hub airports in Europe and the Gulf. Our panel data covers connection traffic from 1997 to 2013 for Heathrow and 1997 to 2011 for Frankfurt. The single-spill results support strongly that the connection spills from Heathrow’s capacity limitations do strengthen competing hub airports of major alliance groups and to a lesser degree one Gulf hub. The double-spill model for Heathrow and Frankfurt shows nearly asymmetric overall spill characteristics between the two airports. Our results underline the influence of airline network strategies on congestion spills as European airline networks are shaped by alliances and umbrella mergers. Thus, the airline network perspective in airport capacity expansion decisions needs to play a greater role, as indicated by our asymmetric results for overall spill effects between Heathrow and Frankfurt airports.  相似文献   

18.
In this paper we present a continuous-time network loading procedure based on the Lighthill–Whitham–Richards model proposed by Lighthill and Whitham, 1955, Richards, 1956. A system of differential algebraic equations (DAEs) is proposed for describing traffic flow propagation, travel delay and route choices. We employ a novel numerical apparatus to reformulate the scalar conservation law as a flow-based partial differential equation (PDE), which is then solved semi-analytically with the Lax–Hopf formula. This approach allows for an efficient computational scheme for large-scale networks. We embed this network loading procedure into the dynamic user equilibrium (DUE) model proposed by Friesz et al. (1993). The DUE model is solved as a differential variational inequality (DVI) using a fixed-point algorithm. Several numerical examples of DUE on networks of varying sizes are presented, including the Sioux Falls network with a significant number of paths and origin–destination pairs (OD).The DUE model presented in this article can be formulated as a variational inequality (VI) as reported in Friesz et al. (1993). We will present the Kuhn–Tucker (KT) conditions for that VI, which is a linear system for any given feasible solution, and use them to check whether a DUE solution has been attained. In order to solve for the KT multiplier we present a decomposition of the linear system that allows efficient computation of the dual variables. The numerical solutions of DUE obtained from fixed-point iterations will be tested against the KT conditions and validated as legitimate solutions.  相似文献   

19.
The main obstacles to boosting the bicycle as a mode of transport are safety concerns due to interactions with motorized traffic. One option is to separate cyclists from motorists through exclusive bicycle priority lanes. This practice is easily implemented in uncongested traffic. Enforcing bicycle lanes on congested roads may degenerate the network, making the idea very hard to sell both to the public and the traffic authorities. Inspired by Braess Paradox, we take an unorthodox approach to seeking latent misutilized capacity in the congested networks to be dedicated to exclusive bicycle lanes. The aim of this study is to tailor an efficient and practical method to large size urban networks. Hence, this paper appeals to policy makers in their quest to scientifically convince stakeholder that bicycle is not a secondary mode, rather, it can be greatly accommodated along with other modes even in the heart of the congested cities. In conjunction with the bicycle lane priority, other policy measures such as shared bicycle scheme, electric-bike, integration of public transport and bicycle are also discussed in this article. As for the mathematical methodology, we articulated it as a discrete bilevel mathematical programing. In order to handle the real networks, we developed a phased methodology based on Branch-and-Bound (as a solution algorithm), structured in a less intensive RAM manner. The methodology was tested on real size network of city of Winnipeg, Canada, for which the total of 30 road segments – equivalent to 2.77 km bicycle lanes – in the CBD were found.  相似文献   

20.
Hyun Kim  Yena Song 《Transportation》2018,45(4):1075-1100
The growth of a city or a metropolis requires well-functioning transit systems to accommodate the ensuing increase in travel demand. As a result, mass transit networks have to develop and expand from simple to complex topological systems over time to meet this demand. Such an evolution in the networks’ structure entails not only a change in network accessibility, but also a change in the level of network reliability on the part of stations and the entire system as well. Network accessibility and reliability are popular measures that have been widely applied to evaluate the resilience and vulnerability of a spatially networked system. However, the use of a single measure, either accessibility or reliability, provides different results, which demand an integrated measure to evaluate the network’s performance comprehensively. In this paper, we propose a set of integrated measures, named ACCREL (Integrated Accessibility and Reliability indicators) that considers both metrics in combination to evaluate a network’s performance and vulnerability. We apply the new measures for hypothetical mass transit system topologies, and a case study of the metro transit system in Seoul follows, highlighting the dynamics of network performance with four evolutionary stages. The main contribution of this study lies in the results from the experiments, which can be used to inform how transport network planning can be prepared to enhance the network functionality, thereby achieving a well-balanced, accessible, and reliable system. Insights on network vulnerability are also drawn for public transportation planners and spatial decision makers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号