首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first analytical stochastic and dynamic model for optimizing transit service switching is proposed for “smart transit” applications and for operating shared autonomous transit fleets. The model assumes a region that requires many-to-one last mile transit service either with fixed-route buses or flexible-route, on-demand buses. The demand density evolves continuously over time as an Ornstein-Uhlenbeck process. The optimal policy is determined by solving the switching problem as a market entry and exit real options model. Analysis using the model on a benchmark computational example illustrates the presence of a hysteresis effect, an indifference band that is sensitive to transportation system state and demand parameters, as well as the presence of switching thresholds that exhibit asymmetric sensitivities to transportation system conditions. The proposed policy is computationally compared in a 24-hour simulation to a “perfect information” set of decisions and a myopic policy that has been dominant in the flexible transit literature, with results that suggest the proposed policy can reduce by up to 72% of the excess cost in the myopic policy. Computational experiments of the “modular vehicle” policy demonstrate the existence of an option premium for having flexibility to switch between two vehicle sizes.  相似文献   

2.
As an innovative combination of conventional fixed-route transit and demand responsive service, flex-route transit is currently the most popular type of flexible transit services. This paper proposes a dynamic station strategy to improve the performance of flex-route transit in operating environments with uncertain travel demand. In this strategy, accepted curb-to-curb stops are labeled as temporary stations, which can be utilized by rejected requests for their pick-up and drop-off. The user cost function is defined as the performance measure of transit systems. Analytical models and simulations are constructed to test the feasibility of implementing the dynamic station strategy in flex-route transit services. The study over a real-life flex-route service indicates that the proposed dynamic station strategy could reduce the user cost by up to 30% without any additional operating cost, when an unexpectedly high travel demand surpasses the designed service capacity of deviation services.  相似文献   

3.
To investigate the impact of traffic pricing policies on energy consumption, this study shows a microeconomic quantitative analysis scheme to simulate individual consumption behaviors from a microeconomic viewpoint. Energy consumption is estimated based on individual demand of non‐mobility goods and mobility goods under nine policy scenarios based on strategies of gasoline tax adding and mass transit fare reduction independently or combined. Results show that gasoline tax adding has strong effects on consumption behaviors. Energy consumption reduces mostly because of less consumption of non‐mobility goods and car trips. However, policy of mass transit fare reduction has limited impact on energy saving because consumption of non‐mobility goods and mass transit trips increases, but the number of car trips decline by only a small percentage. Comparing with single‐type policy, policies that combined gasoline tax adding and mass transit fare reduction show less energy consumption. Findings suggest that policies that increase cost of car trips, such as gasoline tax adding, are very helpful to reduce the consumption of non‐mobility goods and car trips, which contribute to less energy consumption. However, reducing cost of mass transit trips suggests limited effect on energy saving. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This study investigates the cost competitiveness of different types of charging infrastructure, including charging stations, charging lanes (via charging-while-driving technologies) and battery swapping stations, in support of an electric public transit system. To this end, we first establish mathematical models to investigate the optimal deployment of various charging facilities along the transit line and determine the optimal size of the electric bus fleet, as well as their batteries, to minimize total infrastructure and fleet costs while guaranteeing service frequency and satisfying the charging needs of the transit system. We then conduct an empirical analysis utilizing available real-world data. The results suggest that: (1) the service frequency, circulation length, and operating speed of a transit system may have a great impact on the cost competitiveness of different charging infrastructure; (2) charging lanes enabled by currently available inductive wireless charging technology are cost competitive for most of the existing bus rapid transit corridors; (3) swapping stations can yield a lower total cost than charging lanes and charging stations for transit systems with high operating speed and low service frequency; (4) charging stations are cost competitive only for transit systems with very low service frequency and short circulation; and (5) the key to making charging lanes more competitive for transit systems with low service frequency and high operating speed is to reduce their unit-length construction cost or enhance their charging power.  相似文献   

5.
Summary

This paper has reported on a study of relative opportunity—not absolute opportunity. Minimum absolute standards for mobility or accessibility are difficult to justify. Some additional study into the development and application of absolute mobility standards may be warranted.

The application of the mobility evaluation model has primarily focused upon a corridor line‐haul system. Conclusions suggest that such a system will not markedly improve existing transit mobility levels in either the peak hour or the off‐peak. The experimental work has verified this conclusion, and more importantly, it has detailed quantitatively the exact levels and spatial distribution of mobility improvements. However, this study does not include a comprehensive analysis of all methods of mobility enhancement, nor does it undertake a comparison of alternative means of mobility improvement. Certainly other methods to improve access to opportunities should be explored before policy considerations are finalized. These methods include other transit solutions, land use alternatives, socio‐economic policies, and other‐mode transportation alternatives. The accessibility technique and mobility indices approach appears to have general applicability in the analysis of optimal strategies for system evaluation.

Of interest is an examination of alternative feeder transit systems to the corridor line. Additional research with the model might point out the maximum mobility effects expected through improved collector service in the suburbs, with corridor line‐haul to the CBD.

The indices are also readily available for a comparison of mobility patterns for different urban areas. Application of the program to transit and socio‐economic data for a set of cities would yield an indication of the relative mobility levels provided. Such data might be considered as an evaluation criterion for future transit funding by federal officials.

In addition, the model is currently being considered by UMTA as a tool to aid in the evaluation of the equitable distribution of transit system benefits as defined in Title VI of the Civil Rights Act of 1964.25 The mobility output would serve as an indicator of the levels‐of‐service provided to certain disadvantaged urban groups. For this application the computer model is being altered to achieve compatability with the Transportation Planning System (UTPS) computer model package developed by UMTA.  相似文献   

6.
Shared autonomous vehicles (SAVs) could provide inexpensive mobility on-demand services. In addition, the autonomous vehicle technology could facilitate the implementation of dynamic ride-sharing (DRS). The widespread adoption of SAVs could provide benefits to society, but also entail risks. For the design of effective policies aiming to realize the advantages of SAVs, a better understanding of how SAVs may be adopted is necessary. This article intends to advance future research about the travel behavior impacts of SAVs, by identifying the characteristics of users who are likely to adopt SAV services and by eliciting willingness to pay measures for service attributes. For this purpose, a stated choice survey was conducted and analyzed, using a mixed logit model. The results show that service attributes including travel cost, travel time and waiting time may be critical determinants of the use of SAVs and the acceptance of DRS. Differences in willingness to pay for service attributes indicate that SAVs with DRS and SAVs without DRS are perceived as two distinct mobility options. The results imply that the adoption of SAVs may differ across cohorts, whereby young individuals and individuals with multimodal travel patterns may be more likely to adopt SAVs. The methodological limitations of the study are also acknowledged. Despite a potential hypothetical bias, the results capture the directionality and relative importance of the attributes of interest.  相似文献   

7.
Cruising-for-parking constraints mobility in urban networks. Car-users may have to cruise for on-street parking before reaching their destinations. The accessibility and the cost of parking significantly influence people's travel behavior (such as mode choice, or parking facility choice between on-street and garage). The cruising flow causes delays eventually to everyone, even users with destinations outside limited parking areas. It is therefore important to understand the impact of parking limitation on mobility, and to identify efficient parking policies for travel cost reduction. Most existing studies on parking fall short in reproducing the dynamic spatiotemporal features of traffic congestion in general, lack the treatment of dynamics of the cruising-for-parking phenomenon, or require detailed input data that are typically costly and difficult to collect. In this paper, we propose an aggregated and dynamic approach for modeling multimodal traffic with the treatment on parking, and utilize the approach to design dynamic parking pricing strategies. The proposed approach is based on the Macroscopic Fundamental Diagram (MFD), which can capture congestion dynamics at network-level for single-mode and bi-modal (car and bus) systems. A parsimonious parking model is integrated into the MFD-based multimodal modeling framework, where the dynamics of vehicular and passenger flows are considered with a change in the aggregated behavior (e.g. mode choice and parking facility choice) caused by cruising and congestion. Pricing strategies are developed with the objective of reducing congestion, as well as lowering the total travel cost of all users. A case study is carried out for a bi-modal city network with a congested downtown region. An elegant feedback dynamic parking pricing strategy can effectively reduce travel delay of cruising and the generic congestion. Remarkably, such strategy, which is applicable in real-time management with limited available data, is fairly as efficient as a dynamic pricing scheme obtained from system optimum conditions and a global optimization with full information about the future states of the system. Stackelberg equilibrium is also investigated in a competitive behavior between different parking facility operators. Policy indications on on-street storage capacity management and pricing are provided.  相似文献   

8.
Motivated by the growth of ridesourcing services and the expected advent of fully-autonomous vehicles (AVs), this paper defines, models, and compares assignment strategies for a shared-use AV mobility service (SAMS). Specifically, the paper presents the on-demand SAMS with no shared rides, defined as a fleet of AVs, controlled by a central operator, that provides direct origin-to-destination service to travelers who request rides via a mobile application and expect to be picked up within a few minutes. The underlying operational problem associated with the on-demand SAMS with no shared rides is a sequential (i.e. dynamic or time-dependent) stochastic control problem. The AV fleet operator must assign AVs to open traveler requests in real-time as traveler requests enter the system dynamically and stochastically. As there is likely no optimal policy for this sequential stochastic control problem, this paper presents and compares six AV-traveler assignment strategies (i.e. control policies). An agent-based simulation tool is employed to model the dynamic system of AVs, travelers, and the intelligent SAMS fleet operator, as well as, to compare assignment strategies across various scenarios. The results show that optimization-based AV-traveler assignment strategies, strategies that allow en-route pickup AVs to be diverted to new traveler requests, and strategies that incorporate en-route drop-off AVs in the assignment problem, reduce fleet miles and decrease traveler wait times. The more-sophisticated AV-traveler assignment strategies significantly improve operational efficiency when fleet utilization is high (e.g. during the morning or evening peak); conversely, when fleet utilization is low, simply assigning traveler requests sequentially to the nearest idle AV is comparable to more-advanced strategies. Simulation results also indicate that the spatial distribution of traveler requests significantly impacts the empty fleet miles generated by the on-demand SAMS.  相似文献   

9.
This paper proposes a stochastic dynamic transit assignment model with an explicit seat allocation process. The model is applicable to a general transit network. A seat allocation model is proposed to estimate the probability of a passenger waiting at a station or on-board to get a seat. The explicit seating model allows a better differentiation of in-vehicle discomfort experienced by sitting and standing passengers. The paper proposes simulation procedures for calculating the sitting probability of each type of passengers. A heuristic solution algorithm for finding an equilibrium solution of the proposed model is developed and tested. The numerical tests show significant influences of the seat allocation model on equilibrium departure time and route choices of passengers. The proposed model is also applied to evaluate the effects of an advanced public transport information system (APTIS) on travellers’ decision-making.  相似文献   

10.
This paper investigates evolutionary implementation of congestion pricing schemes to minimize the system cost and time, measured in monetary and time units, respectively, with the travelers’ day-to-day route adjustment behavior and their heterogeneity. The travelers’ heterogeneity is captured by their value-of-times. First, the multi-class flow dynamical system is proposed to model the travelers’ route adjustment behavior in a tolled transportation network with multiple user classes. Then, the stability condition and properties of equilibrium is examined. We further investigate the trajectory control problem via dynamic congestion pricing scheme to derive the system cost, time optimum, and generally, Pareto optimum in the sense of simultaneous minimization of system cost and time. The trajectory control problem is modeled by a differential–algebraic system with the differential sub-system capturing the flow dynamics and the algebraic one capturing the pricing constraint. The explicit Runge–Kutta method is proposed to calculate the dynamic flow trajectories and anonymous link tolls. The method allows the link tolls to be updated with any predetermined periods and forces the system cost and/or time to approach the optimum levels. Both analytical and numerical examples are adopted to examine the efficiency of the method.  相似文献   

11.
This paper describes a connected-vehicle-based system architecture which can provide more precise and comprehensive information on bus movements and passenger status. Then a dynamic control method is proposed using connected vehicle data. Traditionally, the bus bunching problem has been formulated into one of two types of optimization problem. The first uses total passenger time cost as the objective function and capacity, safe headway, and other factors as constraints. Due to the large number of scenarios considered, this type of framework is inefficient for real-time implementation. The other type uses headway adherence as the objective and applies a feedback control framework to minimize headway variations. Due to the simplicity in the formulation and solution algorithms, the headway-based models are more suitable for real-time transit operations. However, the headway-based feedback control framework proposed in the literature still assumes homogeneous conditions at all bus stations, and does not consider restricting passenger loads within the capacity constraints. In this paper, a dynamic control framework is proposed to improve not only headway adherence but also maintain the stability of passenger load within bus capacity in both homogenous and heterogeneous situations at bus stations. The study provides the stability conditions for optimal control with heterogeneous bus conditions and derives optimal control strategies to minimize passenger transit cost while maintaining vehicle loading within capacity constraints. The proposed model is validated with a numerical analysis and case study based on field data collected in Chengdu, China. The results show that the proposed model performs well on high-demand bus routes.  相似文献   

12.
Demand for public transportation is highly affected by passengers’ experience and the level of service provided. Thus, it is vital for transit agencies to deploy adaptive strategies to respond to changes in demand or supply in a timely manner, and prevent unwanted deterioration in service quality. In this paper, a real time prediction methodology, based on univariate and multivariate state-space models, is developed to predict the short-term passenger arrivals at transit stations. A univariate state-space model is developed at the station level. Through a hierarchical clustering algorithm with correlation distance, stations with similar demand patterns are identified. A dynamic factor model is proposed for each cluster, capturing station interdependencies through a set of common factors. Both approaches can model the effect of exogenous events (such as football games). Ensemble predictions are then obtained by combining the outputs from the two models, based on their respective accuracy. We evaluate these models using data from the 32 stations on the Central line of the London Underground (LU), operated by Transport for London (TfL). The results indicate that the proposed methodology performs well in predicting short-term station arrivals for the set of test days. For most stations, ensemble prediction has the lowest mean error, as well as the smallest range of error, and exhibits more robust performance across the test days.  相似文献   

13.
Abstract

In large metropolitan areas, public transit is a major mode choice of commuters for their daily travel, which has an important role in relieving congestion on transportation corridors. The purpose of this study is to develop a model which optimizes service patterns (SPs) and frequencies that yield minimum cost transit operation. Considering a general transit route with given stops and origin-destination demand, the proposed model consists of an objective total cost function and a set of constraints to ensure frequency conservation and sufficient capacity subject to operable fleet size. A numerical example is provided to demonstrate the effectiveness of the developed model, in which the demand and facility data of a rail transit route were given. Results show that the proposed model can be applied to optimize integrated SPs and headways that significantly reduce the total cost, while the resulting performance indicators are generated.  相似文献   

14.
This paper analyzes the potential to, and impacts of, increasing transit modal split in a polycentric metropolitan area – the Philadelphia, Pennsylvania region. Potential transit riders are preselected as those travelers whose trips begin and end in areas with transit-supportive land uses, defined as “activity centers,” areas of high-density employment and trip attraction. A multimodal traffic assignment model is developed and solved to quantify the generalized cost of travel by transit services and private automobile under (user) equilibrium conditions. The model predicts transit modal split by identifying the origin–destination pairs for which transit offers lower generalized cost. For those origin–destination pairs for which transit does not offer the lowest generalized cost, I compute a transit competitiveness measure, the ratio of transit generalized cost to auto generalized cost. The model is first formulated and solved for existing transit service and regional pricing schemes. Next, various transit incentives (travel time or fare reductions, increased service) and auto disincentives (higher out of pocket expenses) are proposed and their impacts on individual travel choices and system performance are quantified. The results suggest that a coordinated policy of improved transit service and some auto disincentives is necessary to achieve greater modal split and improved system efficiency in the region. Further, the research finds that two levels of coordinated transit service, between and within activity centers, are necessary to realize the greatest improvements in system performance.  相似文献   

15.
This study examines the price and flow dynamics under a tradable credit scheme, when the credits can be traded in a free market. A continuous dynamic model in a finite time horizon is proposed to describe the travelers’ learning behavior and the evolution of network flows and credit price, and then the existence and uniqueness of the equilibria are established. The conditions for stability and convergence of the dynamic system as the time horizon extends to infinity and the impact of limited implementation time horizon on the system behavior are investigated.  相似文献   

16.
The operating cost of a demand responsive transit (DRT) system strictly depends on the quality of service that it offers to its users. An operating agency seeks to minimize operating costs while maintaining the quality of service while users experience costs associated with scheduling, waiting, and traveling within the system. In this paper, an analytical model is employed to approximate the agency's operating cost for running a DRT system with dynamic demand and the total generalized cost that users experience as a result of the operating decisions. The approach makes use of Vickrey's (1969) congestion theory to model the dynamics of the DRT system in the equilibrium condition and approximate the generalized cost for users when the operating capacity is inadequate to serve the time-dependent demand over the peak period without excess delay. The efficiency of the DRT system can be improved by optimizing one of three parameters that define the agency's operating decision: (1) the operating capacity of the system, (2) the number of passengers that have requested a pick-up and are awaiting service, and (3) the distribution of requested times for service from the DRT system. A schedule management strategy and dynamic pricing strategies are presented that can be implemented to manage demand and reduce the total cost of the DRT system by keeping the number of waiting requests optimized over the peak period. In the end, proposed optimization strategies are compared using a numerical example.  相似文献   

17.
The modeling of service dynamics has been the focus of recent developments in the field of transit assignment modeling. The emerging focus on dynamic service modeling requires a corresponding shift in transit demand modeling to represent appropriately the dynamic behaviour of passengers and their responses to Intelligent Transportation Systems technologies. This paper presents the theoretical development of a departure time and transit path choice model based on the Markovian Decision Process. This model is the core of the MIcrosimulation Learning-based Approach to TRansit Assignment. Passengers, while traveling, move to different locations in the transit network at different points in time (e.g. at stop, on board), representing a stochastic process. This stochastic process is partly dependent on the transit service performance and partly controlled by the transit rider’s trip choices. This can be analyzed as a Markovian Decision Process, in which actions are rewarded and hence passengers’ optimal policies for maximizing the trip utility can be estimated. The proposed model is classified as a bounded rational model, with a constant utility term and a stochastic choice rule. The model is appropriate for modeling information provision since it distinguishes between individual’s experience with the service performance and information provided about system dynamics.  相似文献   

18.
Actuated traffic signal control logic has many advantages because of its responsiveness to traffic demands, short cycles, effective use of capacity leading to and recovering from oversaturation, and amenability to aggressive transit priority. Its main drawback has been its inability to provide good progression along arterials. However, the traditional way of providing progression along arterials, coordinated–actuated control with a common, fixed cycle length, has many drawbacks stemming from its long cycle lengths, inflexibility in recovering from priority interruptions, and ineffective use of capacity during periods of oversaturation. This research explores a new paradigm for traffic signal control, “self-organizing signals,” based on local actuated control but with some additional rules that create coordination mechanisms. The primary new rules proposed are for secondary extensions, in which the green may be held to serve an imminently arriving platoon, and dynamic coordination, in which small groups of closely spaced signals communicate with one another to cycle synchronously with the group’s critical intersection. Simulation tests in VISSIM performed on arterial corridors in Massachusetts and Arizona show overall delay reductions of up to 14% compared to an optimized coordinated–actuated scheme where there is no transit priority, and more than 30% in scenarios with temporary oversaturation. Tests also show that with self-organizing control, transit signal priority can be more effective than with coordinated–actuated control, reducing transit delay by about 60%, or 12 to 14 s per intersection with little impact on traffic delay.  相似文献   

19.
Public transit structure is traditionally designed to contain fixed bus routes and predetermined bus stations. This paper presents an alternative flexible-route transit system, in which each bus is allowed to travel across a predetermined area to serve passengers, while these bus service areas collectively form a hybrid “grand” structure that resembles hub-and-spoke and grid networks. We analyze the agency and user cost components of this proposed system in idealized square cities and seek the optimum network layout, service area of each bus, and bus headway, to minimize the total system cost. We compare the performance of the proposed transit system with those of comparable systems (e.g., fixed-route transit network and taxi service), and show how each system is advantageous under certain passenger demand levels. It is found out that under low-to-moderate demand levels, the proposed flexible-route system tends to have the lowest system cost.  相似文献   

20.
An optimization model for station locations for an on-ground rail transit line is developed using different objective functions of demand and cost as both influence the planning of a rail transit alignment. A microscopic analysis is performed to develop a rail transit alignment in a given corridor considering a many-to-one travel demand pattern. A variable demand case is considered as it replicates a realistic scenario for planning a rail transit line. A Genetic Algorithm (GA) based on a Geographical Information System (GIS) database is developed to optimize the station locations for a rail transit alignment. The first objective is to minimize the total system cost per person, which is a function of user cost, operator cost, and location cost. The second objective is to maximize the ridership or the service coverage of the rail transit alignment. The user cost per person is minimized separately as the third objective because the user cost is one of the most important decision-making factors for planning a transit system from the users’ perspective. A transit planner can make an informed decision between various alternatives based on the results obtained using different objective functions. The model is applied in a case study in the Washington, DC area. The optimal locations and sequence of stations obtained using the three objective functions are presented and a comparative study between the results obtained is shown in the paper. In future works we will develop a combinatorial optimization problem using the aforementioned objectives for the rail transit alignment planning and design problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号