首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Technological advances are bringing connected and autonomous vehicles (CAVs) to the ever-evolving transportation system. Anticipating public acceptance and adoption of these technologies is important. A recent internet-based survey polled 347 Austinites to understand their opinions on smart-car technologies and strategies. Results indicate that respondents perceive fewer crashes to be the primary benefit of autonomous vehicles (AVs), with equipment failure being their top concern. Their average willingness to pay (WTP) for adding full (Level 4) automation ($7253) appears to be much higher than that for adding partial (Level 3) automation ($3300) to their current vehicles.Ordered probit and other model specifications estimate the impact of demographics, built-environment variables, and travel characteristics on Austinites’ WTP for adding various automation technologies and connectivity to their current and coming vehicles. It also estimates adoption rates of shared autonomous vehicles (SAVs) under different pricing scenarios ($1, $2, and $3 per mile), choice dependence on friends’ and neighbors’ adoption rates, and home-location decisions after AVs and SAVs become a common mode of transport. Higher-income, technology-savvy males, who live in urban areas, and those who have experienced more crashes have a greater interest in and higher WTP for the new technologies, with less dependence on others’ adoption rates. Such behavioral models are useful to simulate long-term adoption of CAV technologies under different vehicle pricing and demographic scenarios. These results can be used to develop smarter transportation systems for more efficient and sustainable travel.  相似文献   

2.
While connected, highly automated, and autonomous vehicles (CAVs) will eventually hit the roads, their success and market penetration rates depend largely on public opinions regarding benefits, concerns, and adoption of these technologies. Additionally, the introduction of these technologies is accompanied by uncertainties in their effects on the carsharing market and land use patterns, and raises the need for tolling policies to appease the travel demand induced due to the increased convenience. To these ends, this study surveyed 1088 respondents across Texas to understand their opinions about smart vehicle technologies and related decisions. The key summary statistics indicate that Texans are willing to pay (WTP) $2910, $4607, $7589, and $127 for Level 2, Level 3, and Level 4 automation and connectivity, respectively, on average. Moreover, affordability and equipment failure are Texans’ top two concerns regarding AVs. This study also estimates interval regression and ordered probit models to understand the multivariate correlation between explanatory variables, such as demographics, built-environment attributes, travel patterns, and crash histories, and response variables, including willingness to pay for CAV technologies, adoption rates of shared AVs at different pricing points, home location shift decisions, adoption timing of automation technologies, and opinions about various tolling policies. The practically significant relationships indicate that more experienced licensed drivers and older people associate lower WTP values with all new vehicle technologies. Such parameter estimates help not only in forecasting long-term adoption of CAV technologies, but also help transportation planners in understanding the characteristics of regions with high or low future-year CAV adoption levels, and subsequently, develop smart strategies in respective regions.  相似文献   

3.
ABSTRACT

Connected and autonomous vehicle (CAV) technologies are expected to change driving/vehicle behavior on freeways. This study investigates the impact of CAVs on freeway capacity using a microsimulation tool. A four-lane basic freeway segment is selected as the case study through the Caltrans Performance Measurement System (PeMS). To obtain valid results, various driving behavior parameters are calibrated to the real traffic conditions for human-driven vehicles. In particular, the calibration is conducted using genetic algorithm. A revised Intelligent Driver Model (IDM) is developed and used as the car-following model for CAVs. The simulation is conducted on the basic freeway segment under different penetration rates of CAVs and different freeway speed limits. The results show that with an increase in the market penetration rate, freeway capacity increases, and will increase significantly as the speed limit increases.  相似文献   

4.
Major technological and infrastructural changes over the next decades, such as the introduction of autonomous vehicles, implementation of mileage-based fees, carsharing and ridesharing are expected to have a profound impact on lifestyles and travel behavior. Current travel demand models are unable to predict long-range trends in travel behavior as they do not entail a mechanism that projects membership and market share of new modes of transport (Uber, Lyft, etc.). We propose integrating discrete choice and technology adoption models to address the aforementioned issue. In order to do so, we build on the formulation of discrete mixture models and specifically Latent Class Choice Models (LCCMs), which were integrated with a network effect model. The network effect model quantifies the impact of the spatial/network effect of the new technology on the utility of adoption. We adopted a confirmatory approach to estimating our dynamic LCCM based on findings from the technology diffusion literature that focus on defining two distinct types of adopters: innovator/early adopters and imitators. LCCMs allow for heterogeneity in the utility of adoption for the various market segments i.e. innovators/early adopters, imitators and non-adopters. We make use of revealed preference (RP) time series data from a one-way carsharing system in a major city in the United States to estimate model parameters. The data entails a complete set of member enrollment for the carsharing service for a time period of 2.5 years after being launched. Consistent with the technology diffusion literature, our model identifies three latent classes whose utility of adoption have a well-defined set of preferences that are significant and behaviorally consistent. The technology adoption model predicts the probability that a certain individual will adopt the service at a certain time period, and is explained by social influences, network effect, socio-demographics and level-of-service attributes. Finally, the model was calibrated and then used to forecast adoption of the carsharing system for potential investment strategy scenarios. A couple of takeaways from the adoption forecasts were: (1) placing a new station/pod for the carsharing system outside a major technology firm induces the highest expected increase in the monthly number of adopters; and (2) no significant difference in the expected number of monthly adopters for the downtown region will exist between having a station or on-street parking.  相似文献   

5.
Battery electric vehicle adoption research has been on going for two decades. The majority of data gathered thus far is taken from studies that sample members of the general population and not actual adopters of the vehicles. This paper presents findings from a study involving 340 adopters of battery electric vehicles. The data is used to corroborate some existing assumptions made about early adopters. The contribution of this paper, however, is the distinction between two groups of adopters. These are high-end adopters and low-end adopters. It is found that each group has a different socio-economic profile and there are also some psychographic differences. Further they have different opinions of their vehicles with high-end adopters viewing their vehicles more preferentially. The future purchase intentions of each group are explored and it is found that high-end adopters are more likely to continue with ownership of battery electric vehicles in subsequent purchases. Finally reasons for this are explored by comparing each adopter group’s opinions of their vehicles to their future purchase intentions. From this is it suggested that time to refuel and range for low-end battery electric vehicles should be improved in order to increase chances of drivers continuing with BEV ownership.  相似文献   

6.
Literature has shown potentials of Connected/Cooperative Automated Vehicles (CAVs) in improving highway operations, especially on roadway capacity and flow stability. However, benefits were also shown to be negligible at low market penetration rates. This work develops a novel adaptive driving strategy for CAVs to stabilise heterogeneous vehicle strings by controlling one CAV under vehicle-to-infrastructure (V2I) communications. Assumed is a roadside system with V2I communications, which receives control parameters of the CAV in the string and estimates parameters imperfectly of non-connected automated vehicles. It determines the adaptive control parameters (e.g. desired time gap and feedback gains) of the CAV if a downstream disturbance is identified and sends them to the CAV. The CAV changes its behaviour based on the adaptive parameters commanded by the roadside system to suppress the disturbance.The proposed adaptive driving strategy is based on string stability analysis of heterogeneous vehicle strings. To this end, linearised vehicle dynamics model and control law are used in the controller parametrisation and Laplace transform of the speed and gap error dynamics in time domain to frequency domain enables the determination of sufficient string stability criteria of heterogeneous strings. The analytical string stability conditions give new insights into automated vehicular string stability properties in relation to the system properties of time delays and controller design parameters of feedback gains and desired time gap. It further allows the quantification of a stability margin, which is subsequently used to adapt the feedback control gains and desired time gap of the CAV to suppress the amplification of gap and speed errors through the string.Analytical results are verified via systematic simulation of both homogeneous and heterogeneous strings. Simulation demonstrates the predictive power of the analytical string stability conditions. The performance of the adaptive driving strategy under V2I cooperation is tested in simulation. Results show that even the estimation of control parameters of non-connected automated vehicles are imperfect and there is mismatch between the model used in analytical derivation and that in simulation, the proposed adaptive driving strategy suppresses disturbances in a wide range of situations.  相似文献   

7.
During the last years, many governments have set targets for increasing the share of biofuels in the transportation sector. Understanding consumer behavior is essential in designing policies that efficiently increase the uptake of cleaner technologies. In this paper we analyze adopters and non-adopters of alternative fuel vehicles (AFVs). We use diffusion of innovation theory and the established notion that the social system and interpersonal influence play important roles in adoption. Based on a nationwide database of car owners we analyze interpersonal influence on adoption from three social domains: neighbors, family and coworkers. The results point primarily at a neighbor effect in that AFV adoption is more likely if neighbors also have adopted. The results also point at significant effects of interpersonal influence from coworkers and family members but these effects weaken or disappear when income, education level, marriage, age, gender and green party votes are controlled for. The results extend the diffusion of innovation and AFV literature with empirical support for interpersonal influence based on objective data where response bias is not a factor. Implications for further research, environmental and transport policy, and practitioners are discussed.  相似文献   

8.
This paper conducts a comparative discrete choice analysis to estimate consumers’ willingness to pay (WTP) for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) on the basis of the same stated preference survey carried out in the US and Japan in 2012. We also carry out a comparative analysis across four US states. We find that on average US consumers are more sensitive to fuel cost reductions and alternative fuel station availability than are Japanese consumers. With regard to the comparative analysis across the four US states, consumers’ WTP for a fuel cost reduction in California is considerably greater than in the other three states. We use the estimates obtained in the discrete choice analysis to examine the EV/PHEV market shares under several scenarios. In a base case scenario with relatively realistic attribute levels, conventional gasoline vehicles still dominate both in the US and Japan. However, in an innovation scenario with a significant purchase price reduction, we observe a high penetration of alternative fuel vehicles both in the US and Japan. We illustrate the potential use of a discrete choice analysis for forward-looking policy analysis, with the future opportunity to compare its predictions against actual revealed choices. In this case, increased purchase price subsidies are likely to have a significant impact on the market shares of alternative fuel vehicles.  相似文献   

9.
This study gains insight into individual motivations for choosing to own and use autonomous vehicles and develops a model for autonomous vehicle long-term choice decisions. A stated preference questionnaire is distributed to 721 individuals living across Israel and North America. Based on the characteristics of their current commutes, individuals are presented with various scenarios and asked to choose the car they would use for their commute. A vehicle choice model which includes three options is estimated:
  • (1)Continue to commute using a regular car that you have in your possession.
  • (2)Buy and shift to commuting using a privately-owned autonomous vehicle (PAV).
  • (3)Shift to using a shared-autonomous vehicle (SAV), from a fleet of on-demand cars for your commute.
A factor analysis determined five relevant latent variables describing the individuals’ attitudes: technology interest, environmental concern, enjoy driving, public transit attitude, and pro-AV sentiments. The effects that the characteristics of the individual and the autonomous vehicle have on use and acceptance are quantified through random utility models including logit kernel model taking into account panel effects.Currently, large overall hesitations towards autonomous vehicle adoption exist, with 44% of choice decisions remaining regular vehicles. Early AV adopters will likely be young, students, more educated, and spend more time in vehicles. Even if the SAV service were to be completely free, only 75% of individuals would currently be willing to use SAVs. The study also found various differences regarding the preferences of individuals in Israel and North America, namely that Israelis are overall more likely to shift to autonomous vehicles.Methods to encourage SAV use include increasing the costs for regular cars as well as educating the public about the benefits of shared autonomous vehicles.  相似文献   

10.
Early adopters promoting electric vehicles in their social network may speed up market uptake of this technology. Apart from their opinion leader status, few previous research details the motivations which turn early adopters into advocates for innovation who approach the non-adopters among their family and friends, or casual acquaintances.Drawing on a survey among 1398 e-bike and 133 e-scooter early adopters in Austria, personal drivers of engagement in interpersonal diffusion are investigated. Longitudinal data one year later for 157 e-bike users allows tests of causal relations. A complementary sample of 33 network peers illustrates the early adopters’ social impact.Early adopters engage actively in discussing product features, instigating trial behavior and recommending purchase. Analyses by structural equation modeling show that efforts at interpersonal diffusion are driven by opinion leadership, experienced product performance, and perceived normative expectations of others toward pro-environmental technologies. Mediator and moderator analyses underline that opinion leadership is conveyed upon early adopters because personal norms and technophilia qualify them as credible and competent for the specific topic of e-vehicles. Social norm interrelations point to dynamic interactions and discourse between early adopters and their addressees. Evidence from the peer sample suggests though that the persuasive impact of early adopters is small.To accelerate market entry of electric vehicles, public or private agencies should foremost approach early adopters scoring high in the identified drivers, and empower them in their role as multiplicators by providing pre-prepared product information and encouraging them to continuously address peers.  相似文献   

11.
Autonomous vehicles (AVs) are expected to act as an economically-disruptive transportation technology offering several benefits to the society and causing significant changes in travel behavior and network performance. However, one of the critical issues that policymakers are facing is the absence of a sound estimation of their market penetration. This study is an effort to quantify the effect of different drivers on the adoption timing of AVs. To this end, we develop an innovation diffusion model in which individuals’ propensities to adopt a new technology such as AVs takes influence from a desire to innovate and a need to imitate the rest of the society. It also captures various sources of inter-personal heterogeneity. We found that conditional on our assumptions regarding the changes in market price of AVs over time, their market penetration in our study region (Chicago metropolitan area) will eventually reach 71.3%. Further, model estimation results show that a wide range of socio-demographic factors, travel pattern indicators, technology awareness, and perceptions of AVs are influential in people’s AV adoption timing decision. For instance, frequent long-distance travelers are found to make the adoption decision more innovatively while those who have experienced an accident in their lifetime are found to be more influenced by word of mouth.  相似文献   

12.
Greater adoption and use of alternative fuel vehicles (AFVs) can be environmentally beneficial and reduce dependence on gasoline. The use of AFVs vis-à-vis conventional gasoline vehicles is not well understood, especially when it comes to travel choices and short-term driving decisions. Using data that contains a sufficiently large number of early AFV adopters (who have overcome obstacles to adoption), this study explores differences in use of AFVs and conventional gasoline vehicles (and hybrid vehicles). The study analyzes large-scale behavioral data integrated with sensor data from global positioning system devices, representing advances in large-scale data analytics. Specifically, it makes sense of data containing 54,043,889 s of speed observations, and 65,652 trips made by 2908 drivers in 5 regions of California. The study answers important research questions about AFV use patterns (e.g., trip frequency and daily vehicle miles traveled) and driving practices. Driving volatility, as one measure of driving practice, is used as a key metric in this study to capture acceleration, and vehicular jerk decisions that exceed certain thresholds during a trip. The results show that AFVs cannot be viewed as monolithic; there are important differences within AFV use, i.e., between plug-in hybrids, battery electric, or compressed natural gas vehicles. Multi-level models are particularly appropriate for analysis, given that the data are nested, i.e., multiple trips are made by different drivers who reside in various regions. Using such models, the study also found that driving volatility varies significantly between trips, driver groups, and regions in California. Some alternative fuel vehicles are associated with calmer driving compared with conventional vehicles. The implications of the results for safety, informed consumer choices and large-scale data analytics are discussed.  相似文献   

13.
We perform a meta-analysis of studies investigating consumer preferences for electric and other alternative fuel vehicles (AFVs) to provide insights into the way driving range is traded off for capital costs. We find that consumers are willing to pay, on average, between 66 and 75 US$ for a 1-mile increase in driving range. Ceteris paribus, 100-mile-range cars have to be priced about 60% less than their conventional counterparts to become competitive. In line with intuition, but in contrast to most specifications employed in primary studies, we find that consumers’ marginal willingness to pay (WTP) decreases at a diminishing rate with increases in driving range. The variation in the WTP and compensating variation estimates among examined studies can be attributed to differences in the levels of driving range considered, in other elements of the study design and in the country of study. Our findings support stated preference literature’s conclusion that short driving range has been a major limitation to the large-scale adoption of battery electric vehicles (BEVs) and other AFVs, and that technological developments permitting longer driving ranges will, to some extent, facilitate their market penetration. We further propose that consumer valuation of driving range should not be examined in isolation from other attributes related to refuelling activities, such as refuelling duration and the coverage of refuelling infrastructure.  相似文献   

14.
ABSTRACT

While automated vehicle (AV) development continues to progress rapidly, how the public will accept and adopt automated vehicles remains an open question. Using extensive survey data, we apply cluster analysis to better understand consumer perceptions toward potential benefits and concerns related to AVs with regard to factors influencing their AV adoption likelihood. Four market segments are identified – ‘benefits-dominated,’ ‘concerns-dominated,’ ‘uncertain,’ and ‘well-informed.’ A random parameters multinomial logit model is then estimated to identify factors influencing the probability of respondents belonging to one of these four market segments. Among other influences (such as socio-economic and current travel characteristics), it is found that ‘Millennials’ have a higher probability of belonging to the well-informed market segment, ‘Gen-Xers’ with a lower probability to the uncertain market segment, and ‘Baby Boomers’ with a higher probability to the concerns-dominated market (relative to the ‘Great Generation’). We also study the individuals’ expressed likelihood of AV adoption using separate random parameters ordered probit estimations for each of the four market segments. The substantial and statistically significant differences across each AV consumer market segment underscore the potentially large impact that different consumer demographics may have on AV adoption and the need for targeted marketing to achieve better market-penetration outcomes.  相似文献   

15.
Current research on traffic control has focused on the optimization of either traffic signals or vehicle trajectories. With the rapid development of connected and automated vehicle (CAV) technologies, vehicles equipped with dedicated short-range communications (DSRC) can communicate not only with other CAVs but also with infrastructure. Joint control of vehicle trajectories and traffic signals becomes feasible and may achieve greater benefits regarding system efficiency and environmental sustainability. Traffic control framework is expected to be extended from one dimension (either spatial or temporal) to two dimensions (spatiotemporal). This paper investigates a joint control framework for isolated intersections. The control framework is modeled as a two-stage optimization problem with signal optimization at the first stage and vehicle trajectory control at the second stage. The signal optimization is modeled as a dynamic programming (DP) problem with the objective to minimize vehicle delay. Optimal control theory is applied to the vehicle trajectory control problem with the objective to minimize fuel consumption and emissions. A simplified objective function is adopted to get analytical solutions to the optimal control problem so that the two-stage model is solved efficiently. Simulation results show that the proposed joint control framework is able to reduce both vehicle delay and emissions under a variety of demand levels compared to fixed-time and adaptive signal control when vehicle trajectories are not optimized. The reduced vehicle delay and CO2 emissions can be as much as 24.0% and 13.8%, respectively for a simple two-phase intersection. Sensitivity analysis suggests that maximum acceleration and deceleration rates have a significant impact on the performance regarding both vehicle delay and emission reduction. Further extension to a full eight-phase intersection shows a similar pattern of delay and emission reduction by the joint control framework.  相似文献   

16.
There is a growing literature that promotes the presence of a mix of compensatory and semi-compensatory processing strategies in the way that individuals evaluate packages of attributes in real or hypothetical markets, and make choices. This paper proposes a specification for the utility form in a choice model to test if, given a pair of attributes with a common-metric (e.g., components of travel time or cost), the attribute with the dominating level defines the marginal (dis)utility that is assigned to both attributes. We refer to this processing strategy as a parameter transfer rule. We use a stated choice data set, in the context of car driving individuals choosing between tolled and non-tolled routes, to estimate a mixed logit model which incorporates the presence of the parameter transfer rule and the conventional fully compensatory rule, both existing up to a probability. We find that if this parameter transfer heuristic is part of the mix, the WTP is more than 30% higher, on average, than when only a fully compensatory rule is imposed. We also contrast the parameter transfer rule with other semi-compensatory heuristics which have been investigated in other papers, and show that the finding adds further support to the accumulating evidence that a semi-compensatory attribute processing rules tend to result in higher mean WTP estimates compared to the fully compensatory attribute processing rule.  相似文献   

17.
Annual expenditures for transportation infrastructure have recently surpassed the funding available through tax and fee collection. One large source of revenue generation for transportation infrastructure is use fees that are charged through taxes on gasoline both on a federal and state level. A massive adoption of electric vehicles (EVs) in the United States would result in significantly lower gasoline consumption and thus reduce the revenue collected to maintain the U.S. transportation infrastructure. We investigate how different vehicles will change the annual fee collected on a marginal basis. In addition, we assess the effects of adoption of alternative vehicles on revenues using several projections of alternative vehicles adoption, both on a state-by-state basis and at the national level. We find that baseline midsize and compact vehicles such as the Toyota Camry and Honda Civic generate approximately $2500–$4000 in tax revenue over their lifetime. Under the current funding structure, battery-electric vehicles (BEVs) such as the Nissan Leaf generate substantially less at $400–$1300, while plug-in hybrid electric vehicles (PHEVs) such as the Chevrolet Volt generate $1500–$2700. Even in states with high lifetime fees due to fuel taxes, such as California, revenue generation can be upwards of 50% lower than in states with high registration fees such as Colorado. Total annual revenue generation decreases by about $200 million by 2025 as a result of EV adoption in our base case, but in projections with larger adoption of alternative vehicles could lead to revenue generation reductions as large as $900 million by 2025. Potential schemes that charge user fees on alternative fuel vehicles to overcome the decrease in revenue include a flat annual registration fee at 0.6% of the vehicle’s manufacturer suggested retail price (MSRP) or 2
per mile fee.  相似文献   

18.
Electric vehicles (EVs) are still a maturing technology. Barriers to their adoption include price and range anxiety. EV batteries are significant in determining both EV prices and costs. In this work, we focus on the impact of a high-capacity battery and EV rebates on an EV ecosystem. Using survey data from Los Angeles, California, we simulate different cases of battery costs and prices by means of an agent-based EV ecosystem model. We find that even in Los Angeles, a geographically spread out city, the price of EVs is a more significant barrier to adoption than EV range. In fact, even a quintupling of battery size at no additional costs improves EV adoption by only 5 %. Therefore, policy makers should focus more on affordability than range in promoting EV adoption.  相似文献   

19.
Alternative fuel vehicles (AFVs) as environmentally friendly alternatives to conventional internal combustion engines have gained increasing attention in general public. While empirical studies have begun to explore product-specific factors that drive consumer adoption of AFVs, an integrative framework of a comprehensive set of AFV adoption factors and its theoretical foundation as well as empirical validation is still missing. By drawing on theory of innovation adoption and theory of reasoned action we show that consumers’ perceptions of AFV attributes lead to a general attitude formation towards AFV. In conjunction with consumers’ subjective and personal norm, this in turn determines AFV adoption behavior. Concerning AFV attributes, compatibility, design, and relative advantage of AFVs exhibit the strongest influence on consumers’ attitude formation toward AFV. We derive implications for future research and policy makers. The latter include suggestions on how to develop and communicate AFV in order to stimulate AFV adoption.  相似文献   

20.
This research proposed an eco-driving system for an isolated signalized intersection under partially Connected and Automated Vehicles (CAV) environment. This system prioritizes mobility before improving fuel efficiency and optimizes the entire traffic flow by optimizing speed profiles of the connected and automated vehicles. The optimal control problem was solved using Pontryagin’s Minimum Principle. Simulation-based before and after evaluation of the proposed design was conducted. Fuel consumption benefits range from 2.02% to 58.01%. The CO2 emissions benefits range from 1.97% to 33.26%. Throughput benefits are up to 10.80%. The variations are caused by the market penetration rate of connected and automated vehicles and v/c ratio. No adverse effect is observed. Detailed investigation reveals that benefits are significant as long as there is CAV and they grow with CAV’s market penetration rate (MPR) until they level off at about 40% MPR. This indicates that the proposed eco-driving system can be implemented with a low market penetration rate of connected and automated vehicles and could be implemented in a near future. The investigation also reveals that the proposed eco-driving system is able to smooth out the shock wave caused by signal controls and is robust over the impedance from conventional vehicles and randomness of traffic. The proposed system is fast in computation and has great potential for real-time implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号