首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way.  相似文献   

2.
How to estimate queue length in real-time at signalized intersection is a long-standing problem. The problem gets even more difficult when signal links are congested. The traditional input–output approach for queue length estimation can only handle queues that are shorter than the distance between vehicle detector and intersection stop line, because cumulative vehicle count for arrival traffic is not available once the detector is occupied by the queue. In this paper, instead of counting arrival traffic flow in the current signal cycle, we solve the problem of measuring intersection queue length by exploiting the queue discharge process in the immediate past cycle. Using high-resolution “event-based” traffic signal data, and applying Lighthill–Whitham–Richards (LWR) shockwave theory, we are able to identify traffic state changes that distinguish queue discharge flow from upstream arrival traffic. Therefore, our approach can estimate time-dependent queue length even when the signal links are congested with long queues. Variations of the queue length estimation model are also presented when “event-based” data is not available. Our models are evaluated by comparing the estimated maximum queue length with the ground truth data observed from the field. Evaluation results demonstrate that the proposed models can estimate long queues with satisfactory accuracy. Limitations of the proposed model are also discussed in the paper.  相似文献   

3.
The Connected Vehicle (CV) technology is a mobile platform that enables a new dimension of data exchange among vehicles and between vehicles and infrastructure. This data source could improve the estimation of Measures of Effectiveness (MOEs) for traffic operations in real-time, allowing to perfectly monitor traffic states after being fully adopted. However, as with any novel technology, the CV adoption will be a gradual process. This research focuses on determining minimum CV technology penetration rates that would guarantee accurate MOE estimates on signalized arterials. First, we present estimation methods for various MOEs such as average speed, number of stops, acceleration noise, and delay, followed by an initial assessment of the penetration rates required to accurately estimate them in undersaturated and oversaturated conditions. Next, we propose a methodology to determine the minimum CV market penetration rates to guarantee accurate MOE estimates as a function of traffic conditions, signal settings, sampling duration, and the MOE variability. A correction factor is also provided to account for small vehicle populations where sampling is done without replacement. The methodology is tested in a simulated segment of the San Pablo Avenue arterial in Berkeley, CA. The outcomes show that the minimum penetration rate required can be estimated within 1% for most MOEs under a wide range of traffic conditions. The proposed methodology can be used to determine if MOE estimates obtained with a portion of CV equipped vehicles can yield accurate enough results. The methodology could also be used to develop and assess control strategies towards improved arterial traffic operations.  相似文献   

4.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

5.
Well-defined relationships between flow and density averaged spatially across urban traffic networks, more commonly known as Macroscopic Fundamental Diagrams (MFDs), have been recently verified to exist in reality. Researchers have proposed using MFDs to monitor the status of urban traffic networks and to inform the design of network-wide traffic control strategies. However, it is also well known that empirical MFDs are not easy to estimate in practice due to difficulties in obtaining the requisite data needed to construct them. Recent works have devised ways to estimate a network’s MFD using limited trajectory data that can be obtained from GPS-equipped mobile probe vehicles. These methods assume that the market penetration level of mobile probe vehicles is uniform across the entire set of OD pairs in the network; however, in reality the probe vehicle market penetration rate varies regionally within a network. When this variation is combined with the imbalance of probe trip lengths and travel times, the compound effects will further complicate the estimation of the MFD.To overcome this deficit, we propose a method to estimate a network’s MFD using mobile probe data when the market penetration rates are not necessarily the same across an entire network. This method relies on the determination of appropriate average probe penetration rates, which are weighted harmonic means using individual probe vehicle travel times and distances as the weights. The accuracy of this method is tested using synthetic data generated in the INTEGRATION micro-simulation environment by comparing the estimated MFDs to the ground truth MFD obtained using a 100% market penetration of probe vehicles. The results show that the weighted harmonic mean probe penetration rates outperform simple (arithmetic) average probe penetration rates, as expected. This especially holds true as the imbalance of demand and penetration level increases. Furthermore, as the probe penetration rates are generally not known, an algorithm to estimate the probe penetration rates of regional OD pairs is proposed. This algorithm links count data from sporadic fixed detectors in the network to information from probe vehicles that pass the detectors. The simulation results indicate that the proposed algorithm is very effective. Since the data needed to apply this algorithm are readily available and easy to collect, the proposed algorithm is practically feasible and offers a better approach for the estimation of the MFD using mobile probe data, which are becoming increasingly available in urban environments.  相似文献   

6.
This paper presents a thorough microscopic simulation investigation of a recently proposed methodology for highway traffic estimation with mixed traffic, i.e., traffic comprising both connected and conventional vehicles, which employs only speed measurements stemming from connected vehicles and a limited number (sufficient to guarantee observability) of flow measurements from spot sensors. The estimation scheme is tested using the commercial traffic simulator Aimsun under various penetration rates of connected vehicles, employing a traffic scenario that features congested as well as free-flow conditions. The case of mixed traffic comprising conventional and connected vehicles equipped with adaptive cruise control, which feature a systematically different car-following behavior than regular vehicles, is also considered. In both cases, it is demonstrated that the estimation results are satisfactory, even for low penetration rates.  相似文献   

7.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   

8.
Estimation of time-dependent arterial travel time is a challenging task because of the interrupted nature of urban traffic flows. Many research efforts have been devoted to this topic, but their successes are limited and most of them can only be used for offline purposes due to the limited availability of traffic data from signalized intersections. In this paper, we describe a real-time arterial data collection and archival system developed at the University of Minnesota, followed by an innovative algorithm for time-dependent arterial travel time estimation using the archived traffic data. The data collection system simultaneously collects high-resolution “event-based” traffic data including every vehicle actuations over loop detector and every signal phase changes from multiple intersections. Using the “event-based” data, we estimate time-dependent travel time along an arterial by tracing a virtual probe vehicle. At each time step, the virtual probe has three possible maneuvers: acceleration, deceleration and no-speed-change. The maneuver decision is determined by its own status and surrounding traffic conditions, which can be estimated based on the availability of traffic data at intersections. An interesting property of the proposed model is that travel time estimation errors can be self-corrected, because the trajectory differences between a virtual probe vehicle and a real one can be reduced when both vehicles meet a red signal phase and/or a vehicle queue. Field studies at a 11-intersection arterial corridor along France Avenue in Minneapolis, MN, demonstrate that the proposed model can generate accurate time-dependent travel times under various traffic conditions.  相似文献   

9.
Information from connected vehicles, such as the position and speed of individual vehicles, can be used to optimize traffic operations at an intersection. This paper proposes such an algorithm for two one-way-streets assuming that only a certain percentage of cars are equipped with this technology. The algorithm enumerates different sequences of cars discharging from the intersection to minimize the objective function. Benefits of platooning (multiple cars consecutively discharging from a queue) and signal flexibility (adaptability to demand) are also considered. The goal is to gain insights about the value (in terms of delay savings) of using connected vehicle technology for intersection control.Simulations are conducted for different total demand values and demand ratios to understand the effects of changing the minimum green time at the signal and the penetration rate of connected cars. Using autonomous vehicle control systems, the signal could rapidly change the direction of priority without relying on the reaction of drivers. However, without this technology a minimum green time is necessary. The results of the simulations show that a minimum green time increases the delay only for the low and balanced demand scenarios. Therefore, the value of using cars with autonomous vehicle control can only be seen at intersections with this kind of demand patterns, and could result in up to 7% decrease in delay. On the other hand, using information from connected vehicles to better adapt the traffic signal has proven to be indeed very valuable. Increases in the penetration rate from 0% up to 60% can significantly reduce the average delay (in low demand scenarios a decrease in delay of up to 60% can be observed). That being said, after a penetration rate of 60%, while the delays continue to decrease, the rate of reduction decreases and the marginal value of information from communication technologies diminishes. Overall, it is observed that connected vehicle technology could significantly improve the operation of traffic at signalized intersections, at least under the proposed algorithm.  相似文献   

10.
As mobile traffic sensor technology gets more attention, mathematical models are being developed that utilize this new data type in various intelligent transportation systems applications. This study introduces simple analytical estimation models for queue lengths from tracked or probe vehicles at traffic signals using stochastic modeling approach. Developed models estimate cycle-to-cycle queue lengths by using primary parameters such as arrival rate, probe vehicle proportions, and signal phase durations. Valuable probability distributions and moment generating functions for probe information types are formulated. Fully analytical closed-form expressions are given for the case ignoring the overflow queue and approximation models are presented for the overflow case. Derived models are compared with the results from VISSIM-microscopic simulation. Analytical steady-state and cycle-to-cycle estimation errors are also derived. Numerical examples are shown for the errors of these estimators that change with probe vehicle market penetration levels, arrival rates, and volume-to-capacity ratios.  相似文献   

11.
In this study, we develop a real-time estimation approach for lane-based queue lengths. Our aim is to determine the numbers of queued vehicles in each lane, based on detector information at isolated signalized junctions. The challenges involved in this task are to identify whether there is a residual queue at the start time of each cycle and to determine the proportions of lane-to-lane traffic volumes in each lane. Discriminant models are developed based on time occupancy rates and impulse memories, as calculated by the detector and signal information from a set of upstream and downstream detectors. To determine the proportions of total traffic volume in each lane, the downstream arrivals for each cycle are estimated by using the Kalman filter, which is based on upstream arrivals and downstream discharges collected during the previous cycle. Both the computer simulations and the case study of real-world traffic show that the proposed method is robust and accurate for the estimation of lane-based queue lengths in real time under a wide range of traffic conditions. Calibrated discriminant models play a significant role in determining whether there are residual queued vehicles in each lane at the start time of each cycle. In addition, downstream arrivals estimated by the Kalman filter enhance the accuracy of the estimates by minimizing any error terms caused by lane-changing behavior.  相似文献   

12.
This study addresses the impacts of automated cars on traffic flow at signalized intersections. We develop and subsequently employ a deterministic simulation model of the kinematics of automated cars at a signalized intersection approach, when proceeding forward from a stationary queue at the beginning of a signal phase. In the discrete-time simulation, each vehicle pursues an operational strategy that is consistent with the ‘Assured Clear Distance Ahead’ criterion: each vehicle limits its speed and spacing from the vehicle ahead of it by its objective of not striking it, regardless of whether or not the future behavior of the vehicle ahead is cooperative. The simulation incorporates a set of assumptions regarding the values of operational parameters that will govern automated cars’ kinematics in the immediate future, which are sourced from the relevant literature.We report several findings of note. First, under a set of assumed ‘central’ (i.e. most plausible) parameter values, the time requirement to process a standing queue of ten vehicles is decreased by 25% relative to human driven vehicles. Second, it was found that the standard queue discharge model for human–driven cars does not directly transfer to queue discharge of automated vehicles. Third, a wet roadway surface may result in an increase in capacity at signalized intersections. Fourth, a specific form of vehicle-to-vehicle (V2V) communications that allows all automated vehicles in the stationary queue to begin moving simultaneously at the beginning of a signal phase provides relatively minor increases in capacity in this analysis. Fifth, in recognition of uncertainty regarding the value of each operational parameter, we identify (via scenario analysis, calculation of arc elasticities, and Monte-Carlo methods) the relative sensitivity of overall traffic flow efficiency to the value of each operational parameter.This study comprises an incremental step towards the broader objective of adapting standard techniques for analyzing traffic operations to account for the capabilities of automated vehicles.  相似文献   

13.
Queue management is a valuable but underutilized technique which could be used to minimize the negative impacts of queues during oversaturated traffic conditions. One of the main obstacles of applying queue management techniques along signalized arterials is the unavailability of a robust and sufficiently accurate method for measuring the number of vehicles approaching a signalized intersection. The method based on counting vehicles as they enter and exit a specific detection zone with check-in and check-out detectors is unreliable because of the likely systematic under or over counting and the resulting cumulative errors. This paper describes the application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) in the development of a new fuzzy logic-based approach for estimating the Number of Vehicles in a Detection Zone (NVDZ) by using detector time-occupancy data (instead of detector counts). Microscopic simulation results are used to evaluate the accuracy of the NVDZ estimates. Tests were carried out to determine the transferability of a tuned Fuzzy Inference System (FIS) and to check the sensitivity of the calibrated FIS to detection coverage, the location of the detection zone relative to the signalized (bottleneck) intersection, the length of the detection zone, and different signal timings at the bottleneck intersection. Results show that the NVDZ estimation based on fuzzy logic seems to be a feasible approach. Although the primary objective of developing the NVDZ estimation technique has been queue management, other applications such as ramp metering and incident detection could potentially use the same technique.  相似文献   

14.
Two apparent features that prevail at signalized intersections in China are green signal countdown device and long cycle lengths. The objective of this study is to investigate the impacts of green signal countdown device and long cycle length on queue discharge patterns and to discuss its implications on capacity estimation in the context of China's traffic. At five typical large intersections in Shanghai and Tianjin, 11 through lanes were observed, and 9251 saturation headways were obtained as valid samples. Statistical analyses indicate that the discharge process of queuing vehicles can be divided into three distinct stages according to the discharge flow rate: a start‐up stage, a steady stage, and a rush stage. The average time for queuing vehicles to reach a stationary saturation flow rate, that is, the start‐up stage, was found to be approximately 20–30 seconds; the rush stage usually occurs during the phase transition period. The finding is contrary to the conventional assumption that the discharge rate reaches a maximum value after the fourth vehicle is discharged and then remains constant during the green time until the queue is completely dissolved. The capacity estimation errors that might arise from the conventional methods are discussed through a comparative study and a sensitivity analysis that are based on the identified queue discharge patterns. In addition, a piecewise linear regression method was proposed in order to reduce such errors. The proposed method can be used for capacity estimation at signalized intersections with the identified queue discharge patterns. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The use of probe vehicles to provide estimates of link travel times has been suggested as a means of obtaining travel times within signalized networks for use in advanced traveler information systems. Previous research has shown that bias in arrival time distributions of probe vehicles will lead to a systematic bias in the sample estimate of the mean. This paper proposes a methodology for reducing the effect of this bias. The method, based on stratified sampling techniques, requires that vehicle count data be obtained from an in-road loop detector or other traffic surveillance method. The effectiveness of the methodology is illustrated using simulation results for a single intersection approach and for an arterial corridor. The results for the single intersection approach indicate a correlation (R2) between the biased estimate and the population mean of 0.61, and an improved correlation between the proposed estimation method and the population mean of 0.81. Application of the proposed method to the arterial corridor resulted in a reduction in the mean travel time error of approximately 50%, further indicating that the proposed estimation method provides improved accuracy over the typical method of computing the arithmetic mean of the probe reports.  相似文献   

16.
Establishment of effective cooperation between vehicles and transportation infrastructure improves travel reliability in urban transportation networks. Lack of collaboration, however, exacerbates congestion due mainly to frequent stops at signalized intersections. It is beneficial to develop a control logic that collects basic safety message from approaching connected and autonomous vehicles and guarantees efficient intersection operations with safe and incident free vehicle maneuvers. In this paper, a signal-head-free intersection control logic is formulated into a dynamic programming model that aims to maximize the intersection throughput. A stochastic look-ahead technique is proposed based on Monte Carlo tree search algorithm to determine the near-optimal actions (i.e., acceleration rates) over time to prevent movement conflicts. Our numerical results confirm that the proposed technique can solve the problem efficiently and addresses the consequences of existing traffic signals. The proposed approach, while completely avoids incidents at intersections, significantly reduces travel time (ranging between 59.4% and 83.7% when compared to fixed-time and fully-actuated control strategies) at intersections under various demand patterns.  相似文献   

17.
The current research direction in transportation-related air-quality modeling is towards development and implementation of modal emissions models that correlate emission rates to specific ranges of activity. This paper describes a methodology to identify roadway characteristics at signalized intersections which affect the fraction of vehicle activity spend in specific operating modes where modal emission rate models indicate elevated emissions occur to improve vehicle activity inputs to modal emissions models. Field studies using laser guns were conducted on-road collecting second-by-second activity for individual vehicles at signal-controlled intersections and roadway segments. Hierarchical tree-based regression analysis was used to identify on-road geometric and operational characteristics that influenced the fractions of vehicle activity spent in specific modes. Results indicated that queue position, grade, downstream and upstream per-lane hourly volume, distance to the nearest downstream signalized intersection, percent heavy vehicles, and posted link speed limit were the most statistically significant variables.  相似文献   

18.
Intersections are the bottlenecks of the urban road system because an intersection’s capacity is only a fraction of the maximum flows that the roads connecting to the intersection can carry. This capacity can be increased if vehicles cross the intersections in platoons rather than one by one as they do today. Platoon formation is enabled by connected vehicle technology. This paper assesses the potential mobility benefits of platooning. It argues that saturation flow rates, and hence intersection capacity, can be doubled or tripled by platooning. The argument is supported by the analysis of three queuing models and by the simulation of a road network with 16 intersections and 73 links. The queuing analysis and the simulations reveal that a signalized network with fixed time control will support an increase in demand by a factor of (say) two or three if all saturation flows are increased by the same factor, with no change in the control. Furthermore, despite the increased demand vehicles will experience the same delay and travel time. The same scaling improvement is achieved when the fixed time control is replaced by the max pressure adaptive control. Part of the capacity increase can alternatively be used to reduce queue lengths and the associated queuing delay by decreasing the cycle time. Impediments to the control of connected vehicles to achieve platooning at intersections appear to be small.  相似文献   

19.
Mobile sensing enabled by GPS or smart phones has become an increasingly important source of traffic data. For sufficient coverage of the traffic stream, it is important to maintain a reasonable penetration rate of probe vehicles. From the standpoint of capturing higher-order traffic quantities such as acceleration/deceleration, emission and fuel consumption rates, it is desirable to examine the impact on the estimation accuracy of sampling frequency on vehicle position. Of the two issues raised above, the latter is rarely studied in the literature. This paper addresses the impact of both sampling frequency and penetration rate on mobile sensing of highway traffic. To capture inhomogeneous driving conditions and deviation of traffic from the equilibrium state, we employ the second-order phase transition model (PTM). Several data fusion schemes that incorporate vehicle trajectory data into the PTM are proposed. And, a case study of the NGSIM dataset is presented which shows the estimation results of various Eulerian and Lagrangian traffic quantities. The findings show that while first-order traffic quantities can be accurately estimated even with a low sampling frequency, higher-order traffic quantities, such as acceleration, deviation, and emission rate, tend to be misinterpreted due to insufficiently sampled vehicle locations. We also show that a correction factor approach has the potential to reduce the sensing error arising from low sampling frequency and penetration rate, making the estimation of higher-order quantities more robust against insufficient data coverage of the highway traffic.  相似文献   

20.
Vehicle speed trajectory significantly impacts fuel consumption and greenhouse gas emissions, especially for trips on signalized arterials. Although a large amount of research has been conducted aiming at providing optimal speed advisory to drivers, impacts from queues at intersections are not considered. Ignoring the constraints induced by queues could result in suboptimal or infeasible solutions. In this study, a multi-stage optimal control formulation is proposed to obtain the optimal vehicle trajectory on signalized arterials, where both vehicle queue and traffic light status are considered. To facilitate the real-time update of the optimal speed trajectory, a constrained optimization model is proposed as an approximation approach, which can be solved much quicker. Numerical examples demonstrate the effectiveness of the proposed optimal control model and the solution efficiency of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号