首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
ABSTRACT

Autonomous vehicles (AVs) are expected to reshape travel behaviour and demand in part by enabling productive uses of travel time—a primary component of the “positive utility of travel” concept—thus reducing subjective values of travel time savings (VOT). Many studies from industry and academia have assumed significant increases in travel time use and reductions in VOT for AVs. In this position paper, I argue that AVs’ VOT impacts may be more modest than anticipated and derive from a different source. Vehicle designs and operations may limit activity engagement during travel, with AV users feeling more like car passengers than train riders. Furthermore, shared AVs may attenuate travel time use benefits, and productivity gains could be limited to long-distance trips. Although AV riders will likely have greater activity participation during travel, many in-vehicle activities today may be more about coping with commuting burdens than productively using travel time. Instead, VOT reductions may be more likely to arise from a different “positive utility”—subjective well-being improvements through reduced stresses of driving or the ability to relax and mentally transition. Given high uncertainty, further empirical research on the experiential, time use, and VOT impacts of AVs is needed.  相似文献   

2.
This paper develops an integrated model to characterize the market penetration of autonomous vehicles (AVs) in urban transportation networks. The model explicitly accounts for the interplay among the AV manufacturer, travelers with heterogeneous values of travel time (VOTT), and road infrastructure capacity. By making in-vehicle time use more leisurely or productive, AVs reduce travelers’ VOTT. In addition, AVs can move closer together than human-driven vehicles because of shorter safe reaction time, which leads to increased road capacity. On the other hand, the use of AV technologies means added manufacturing cost and higher price. Thus, traveler adoption of AVs will trade VOTT savings with additional out-of-pocket cost. The model is structured as a leader (AV manufacturer)-follower (traveler) game. Given the cost of producing AVs, the AV manufacturer sets AV price to maximize profit while anticipating AV market penetration. Given an AV price, the vehicle and routing choice of heterogeneous travelers are modeled by combining a multinomial logit model with multi-modal multi-class user equilibrium (UE). The overall problem is formulated as a mathematical program with complementarity constraints (MPCC), which is challenging to solve. We propose a solution approach based on piecewise linearization of the MPCC as a mixed-integer linear program (MILP) and solving the MILP to global optimality. Non-uniform distribution of breakpoints that delimit piecewise intervals and feasibility-based domain reduction are further employed to reduce the approximation error brought by linearization. The model is implemented in a simplified Singapore network with extensive sensitivity analyses and the Sioux Falls network. Computational results demonstrate the effectiveness and efficiency of the solution approach and yield valuable insights about transportation system performance in a mixed autonomous/human driving environment.  相似文献   

3.
Prior research has estimated the impact of an autonomous vehicle (AV) environment on the mobility of underserved populations such as adult non-drivers. What is currently unknown is the impact of AVs on enhancing the mobility of children who are also mobility disadvantaged, as child passengers are likely part of AV ridership scenarios in the perceivable future. To address this question, our study collected perceived benefits and concerns of AVs from a US convenience sample of parents whose children relied on them for mobility. We found that parents’ intentions to travel in AV and their technology readiness as well as parent (sex, residence area) and child (age, restraint system) demographic profiles were important determinants of potential AV acceptance and impact. In addition, two groups of potential AV users emerged from the data: the curious and the practical. This study addresses a gap in the literature by assessing parents’ perspectives on using AVs to transport children. The results have great potentials to guide the design of mobility features, safety evaluations, and implementation policies, as a decline in public interest in AVs has been recently documented.  相似文献   

4.
ABSTRACT

The advent of the autonomous vehicle (AV) will affect not only the transportation system, but also future patterns of land development. Integrated land use and transportation models will be critical tools in assessing the path forward with this technology. Key questions with respect to land use impacts of AVs arise from potential changes in sensitivity to travel and reduced demand for parking. It is an open question whether AVs will induce urban sprawl, or whether spatial economies of agglomeration will mitigate any reductions in travel time sensitivity. The deployment of shared fleets of AVs would likely reduce parking demand, producing yet to be explored impacts on property development within existing urban footprints. We perform a critical assessment of currently operational models and their ability to represent the adoption of AVs. We identify the representation of time in such models as a vital component requiring additional development to model this new technology. Existing model applications have focused on the discrete addition of new infrastructure or policy at a fixed point in time, whereas AV adoption will occur incrementally through time. Stated adaptation surveys are recommended as tools to quantify preferences and develop relevant model inputs. It is argued that existing models that assume comparatively static equilibrium have been convenient in the past, but are insufficient to model technology adoption. In contrast, dynamic model frameworks lack sufficient structure to maintain reasonability under large perturbations from base conditions. The ongoing advancement of computing has allowed models to move away from being mechanistic aggregate tools, towards behaviourally rich depictions of individual persons and firms. However, much work remains to move from projections of existing conditions into the future, to the evolution of the spatial economy as it evolves through time in response to new technologies and exogenous stresses. Principles from complex and evolutionary systems theory will be important in the development of models with the capacity to consider such dynamics.  相似文献   

5.
Emerging autonomous vehicles (AVs) and shared mobility systems per se will transform urban passenger transportation. Coupled together, shared AVs (SAVs) can facilitate widespread use of shared mobility services by providing flexible public travel modes comparable to private AV. Hence, it may be conjectured that future urban mobility is likely an on-demand service and AV private ownership is unappealing. Nonetheless, it is still unclear what observable and latent factors will drive public interest in (S)AVs, the answer to which will have important implications on transportation system performance. This paper aims to jointly model public interest in private AVs and multiple SAV configurations (carsharing, ridesourcing, ridesharing, and access/egress mode) in daily and commute travels with explicit treatment of the correlations across the (S)AV types. To this end, multivariate ordered outcome models with latent variables are employed, whereby latent attitudes and preferences describing traveler safety concern about AV, green travel pattern, and mobility-on-demand savviness are accounted for using structural and measurement equations. Drawing from a stated preference survey in the State of Washington, important insights are gained into the potential user groups based on the socio-economic, built environment, and daily/commute travel behavior attributes. Key policies are also offered to promote public interest in (S)AVs by scrutinizing the marginal effects of the latent variables.  相似文献   

6.
Autonomous vehicles (AVs) represent potentially disruptive and innovative changes to public transportation (PT) systems. However, the exact interplay between AV and PT is understudied in existing research. This paper proposes a systematic approach to the design, simulation, and evaluation of integrated autonomous vehicle and public transportation (AV + PT) systems. Two features distinguish this research from the state of the art in the literature: the first is the transit-oriented AV operation with the purpose of supporting existing PT modes; the second is the explicit modeling of the interaction between demand and supply.We highlight the transit-orientation by identifying the synergistic opportunities between AV and PT, which makes AVs more acceptable to all the stakeholders and respects the social-purpose considerations such as maintaining service availability and ensuring equity. Specifically, AV is designed to serve first-mile connections to rail stations and provide efficient shared mobility in low-density suburban areas. The interaction between demand and supply is modeled using a set of system dynamics equations and solved as a fixed-point problem through an iterative simulation procedure. We develop an agent-based simulation platform of service and a discrete choice model of demand as two subproblems. Using a feedback loop between supply and demand, we capture the interaction between the decisions of the service operator and those of the travelers and model the choices of both parties. Considering uncertainties in demand prediction and stochasticity in simulation, we also evaluate the robustness of our fixed-point solution and demonstrate the convergence of the proposed method empirically.We test our approach in a major European city, simulating scenarios with various fleet sizes, vehicle capacities, fare schemes, and hailing strategies such as in-advance requests. Scenarios are evaluated from the perspectives of passengers, AV operators, PT operators, and urban mobility system. Results show the trade off between the level of service and the operational cost, providing insight for fleet sizing to reach the optimal balance. Our simulated experiments show that encouraging ride-sharing, allowing in-advance requests, and combining fare with transit help enable service integration and encourage sustainable travel. Both the transit-oriented AV operation and the demand-supply interaction are essential components for defining and assessing the roles of the AV technology in our future transportation systems, especially those with ample and robust transit networks.  相似文献   

7.
Fully autonomous vehicles (AVs) have the potential to considerably change urban mobility in the future. This study simulates potential AV operating scenarios in the Greater Toronto Area (GTA), Canada, and assesses transportation system performance on a regional level. For each scenario, the base capacities of certain types of road links are modified to simulate the theoretical increase in throughput enabled by AV driving behavior. Another scenario examines driverless parking operations in downtown Toronto. Simulation results indicate that the increased attractiveness of freeways relative to other routes leads to slightly increased average travel distance as vehicles divert to access higher capacity road links. Average travel time is found to decrease by up to one-fifth at the 90% AV market penetration level. Concurrently, localized increases in congestion suggest that proactive transportation planning will be needed to mitigate negative consequences of AV adoption, especially in relation to induced demand for personal automobile travel.  相似文献   

8.
Autonomous vehicles (AVs) potentially increase vehicle travel by reducing travel and parking costs and by providing improved mobility to those who are too young to drive or older people. The increase in vehicle travel could be generated by both trip diversion from other modes and entirely new trips. Existing studies however tend to overlook AVs’ impacts on entirely new trips. There is a need to develop a methodology for estimating possible impacts of AVs on entirely new trips across all age groups. This paper explores the impacts of AVs on car trips using a case study of Victoria, Australia. A new methodology for estimating entirely new trips associated with AVs is proposed by measuring gaps in travel need at different life stages. Results show that AVs would increase daily trips by 4.14% on average. The 76+ age group would have the largest increase of 18.5%, followed by the 18–24 age group and the 12–17 age group with 14.6 and 11.1% respectively. If car occupancy remains constant in AV scenarios, entirely new trips and trip diversions from public transport and active modes would lead to a 7.31% increase in car trips. However increases in car travel are substantially magnified by reduced car occupancy rates, a trend evidenced throughout the world. Car occupancy would need to increase by at least 5.3–7.3% to keep car trips unchanged in AV scenarios.  相似文献   

9.
Autonomous vehicles (AVs) are expected to act as an economically-disruptive transportation technology offering several benefits to the society and causing significant changes in travel behavior and network performance. However, one of the critical issues that policymakers are facing is the absence of a sound estimation of their market penetration. This study is an effort to quantify the effect of different drivers on the adoption timing of AVs. To this end, we develop an innovation diffusion model in which individuals’ propensities to adopt a new technology such as AVs takes influence from a desire to innovate and a need to imitate the rest of the society. It also captures various sources of inter-personal heterogeneity. We found that conditional on our assumptions regarding the changes in market price of AVs over time, their market penetration in our study region (Chicago metropolitan area) will eventually reach 71.3%. Further, model estimation results show that a wide range of socio-demographic factors, travel pattern indicators, technology awareness, and perceptions of AVs are influential in people’s AV adoption timing decision. For instance, frequent long-distance travelers are found to make the adoption decision more innovatively while those who have experienced an accident in their lifetime are found to be more influenced by word of mouth.  相似文献   

10.
This paper develops a mathematical approach to optimize a time-dependent deployment plan of autonomous vehicle (AV) lanes on a transportation network with heterogeneous traffic stream consisting of both conventional vehicles (CVs) and AVs, so as to minimize the social cost and promote the adoption of AVs. Specifically, AV lanes are exclusive lanes that can only be utilized by AVs, and the deployment plan specifies when, where, and how many AV lanes to be deployed. We first present a multi-class network equilibrium model to describe the flow distributions of both CVs and AVs, given the presence of AV lanes in the network. Considering that the net benefit (e.g., reduced travel cost) derived from the deployment of AV lanes will further promote the AV adoption, we proceed to apply a diffusion model to forecast the evolution of AV market penetration. With the equilibrium model and diffusion model, a time-dependent deployment model is then formulated, which can be solved by an efficient solution algorithm. Lastly, numerical examples based on the south Florida network are presented to demonstrate the proposed models.  相似文献   

11.
In the recent years many developments took place regarding automated vehicles (AVs) technology. It is however unknown to which extent the share of the existing transport modes will change as result of AVs introduction as another public transport option. This study is the first where detailed traveller preferences for AVs are explored and compared to existing modes. Its main objective is to position AVs in the transportation market and understand the sensitivity of travellers towards some of their attributes, focusing particularly on the use of these vehicles as egress mode of train trips. Because fully-automated vehicles are not yet a reality and they entail a potentially high disruptive way on how we use automobiles today, we apply a stated preference experiment where the role of attitudes in perceiving the utility of AVs is particularly explored in addition to the classical instrumental variables and several socio-economic variables. The estimated discrete choice model shows that first class train travellers on average prefer the use of AVs as egress mode, compared to the use of bicycle or bus/tram/metro as egress. We therefore conclude that AVs as last mile transport between the train station and the final destination have most potential for first class train travellers. Results show that in-vehicle time in AVs is experienced more negatively than in-vehicle time in manually driven cars. This suggests that travellers do not perceive the theoretical advantage of being able to perform other tasks during the trip in an automated vehicle, at least not yet. Results also show that travellers’ attitudes regarding trust and sustainability of AVs are playing an important role in AVs attractiveness, which leads to uncertainty on how people will react when AVs are introduced in practice. We therefore state the importance of paying sufficient attention to these psychological factors, next to classic instrumental attributes like travel time and costs, before and during the implementation process of AVs as a public transport alternative. We recommend the extension of this research to revealed preference studies, thereby using the results of field studies.  相似文献   

12.
In practice, travel time is assigned a cost and treated as a disutility to be minimized. There is a growing body of research supporting the hypothesis that travel time has some value of its own, and the proliferation of information and communication technology (ICT) may be contributing to that value. Travelers’ attitudes are confounded with their mode choice, and as telecommunications mediate travel behavior, analysts must recognize the interaction between time use and customer satisfaction for appropriate travel demand management. To that end, this paper presents results from jointly estimated models of travelers’ latent satisfaction and on-board activity engagement using Chicago transit rider data gathered in April 2010. The simple questionnaire and small sample corroborate the findings of past research indicating travel attitudes and activity engagement have potential to influence travelers’ value of time, and many transit riders consider transit a better use of time and/or money than driving. The findings affirm the need for a more holistic understanding of value of time for travel demand management and infrastructure valuation. As time use has an influence on users’ valuation of the transit mode, offering opportunities to conduct certain leisure activities could improve the perceived value of travel time.  相似文献   

13.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes.  相似文献   

14.
Autonomous vehicles (AVs) represent a potentially disruptive yet beneficial change to our transportation system. This new technology has the potential to impact vehicle safety, congestion, and travel behavior. All told, major social AV impacts in the form of crash savings, travel time reduction, fuel efficiency and parking benefits are estimated to approach $2000 to per year per AV, and may eventually approach nearly $4000 when comprehensive crash costs are accounted for. Yet barriers to implementation and mass-market penetration remain. Initial costs will likely be unaffordable. Licensing and testing standards in the U.S. are being developed at the state level, rather than nationally, which may lead to inconsistencies across states. Liability details remain undefined, security concerns linger, and without new privacy standards, a default lack of privacy for personal travel may become the norm. The impacts and interactions with other components of the transportation system, as well as implementation details, remain uncertain. To address these concerns, the federal government should expand research in these areas and create a nationally recognized licensing framework for AVs, determining appropriate standards for liability, security, and data privacy.  相似文献   

15.
Traveler behavior plays a role in the effectiveness of travel demand management (TDM) policies. Personal travel management is explored in this paper by analyzing individuals' adoption and consideration of 17 travel‐related alternatives in relation to socio‐demographic, mobility, travel‐related attitude, personality and lifestyle preference variables. The sample comprises 1282 commuters living in urban and suburban neighborhoods of the San Francisco Bay Area. Among the findings: females were more likely to have adopted/considered the more ‘costly’ strategies; those with higher mobility were more likely to have adopted/considered travel‐maintaining as well as travel‐reducing strategies; and those who like travel and want to do more are less likely to consider travel‐reducing strategies. These findings, when combined with those of earlier work on this subject, present a compelling argument for the need to further understand traveler behavior – particularly in response to congestion and TDM policies.  相似文献   

16.
Carrone  Andrea Papu  Rich  Jeppe  Vandet  Christian Anker  An  Kun 《Transportation》2021,48(6):2907-2938

In upcoming years, the introduction of autonomous vehicles (AVs) will reshape the transport system. The transition from a regular to an autonomous transport system, however, will take place over many years and lead to a long period with a mixed driving environment where AVs and regular vehicles (RVs) operate side by side. The purpose of this study is to investigate how the utilisation of the road capacity degrades as a function of heterogeneity in congested motorways. The analysis is based on a dedicated traffic simulator, which enables the investigation of complex dynamic spillback from congestion while allowing for different degrees of heterogeneity. The representation of autonomous vehicles is based on a modified intelligent driver model (IIDM) presented by Treiber et al. (Phys Rev E 62(2):1805–1824, 2000) and Treiber and Kesting (Traffic flow dynamics, Springer, Heidelberg, 2013), while the behaviour of drivers of RVs relies on a stochastic version of the IIDM. Three main conclusions stand out. Firstly, it is shown that in an idealised environment in which AVs operate alone, a substantially improved capacity utilisation can be attained. Secondly, when drivers of RVs are mixed with AVs, capacity utilisation degrades very fast as a function of the share of RVs. Thirdly, it is shown that the improved capacity utilisation of AVs comes in the form of reduced travel time and increased throughput, with indications that travel time reductions are the most important. From a strategical planning perspective, the results underline that dedicated lanes are preferable to attain the positive effects of AVs. Specifically, we compare a stylised situation with three lanes with a share of 33% AVs to a situation with two regular lanes and a single dedicated AV lane. The latter represents a tripling in consumer surplus all other things being equal.

  相似文献   

17.
A retrospective and prospective survey of time-use research   总被引:6,自引:3,他引:3  
The central basis of the activity-based approach to travel demand modeling is that individuals' activity-travel patterns are a result of their time-use decisions within a continuous time domain. This paper reviews earlier theoretical and empirical research in the time-use area, emphasizing the need to examine activities in the context or setting in which they occur. The review indicates the substantial progress made in the past five years and identifies some possible reasons for this sudden spurt and rejuvenation in the field. The paper concludes that the field of time-use and its relevance to activity-travel modeling has gone substantially past the "tip of the iceberg", though it certainly still has a good part of the "iceberg" to uncover. Important future areas of research are identified and discussed.  相似文献   

18.
A substantial body of research is focused on understanding the relationships between socio-demographics, land-use characteristics, and mode specific attributes on travel mode choice and time-use patterns. Residential and commercial densities, inter-mixing of land uses, and route directness in conjunction with transportation performance characteristics interact to influence accessibility to destinations as well as time spent traveling and engaging in activities. This study uniquely examines the activity durations undertaken for out-of-home subsistence; maintenance, and discretionary activities. Also examined are total tour durations (summing all activity categories within a tour). Cross-sectional activities are obtained from household activity travel survey data from the Atlanta Metropolitan Region. Time durations allocated to weekdays and weekends are compared. The censoring and endogeneity between activity categories and within individuals are captured using multiple equations Tobit models.The analysis and modeling reveal that land-use characteristics such as net residential density and the number of commercial parcels within a kilometer of a residence are associated with differences in weekday and weekend time-use allocations. Household type and structure are significant predictors across the three activity categories, but not for overall travel times. Tour characteristics such as time-of-day and primary travel mode of the tours also affect traveler’s out-of-home activity-tour time-use patterns.  相似文献   

19.
Vyas  Gaurav  Famili  Pooneh  Vovsha  Peter  Fay  Daniel  Kulshrestha  Ashish  Giaimo  Greg  Anderson  Rebekah 《Transportation》2019,46(6):2081-2102
Transportation - Autonomous vehicles (AVs) could change travel patterns of the population significantly and with the rapid improvements in AV technology, transportation planners should address AV...  相似文献   

20.
We consider the use of a Vickrey road bottleneck in the context of repetitive scheduling choices, distinguishing between long-run and short-run scheduling preferences. The preference structure reflects that there is a distinction between the (exogenous) ‘long-run preferred arrival time’, which would be relevant if consumers were unconstrained in the scheduling of their activities, and the ‘short-run preferred arrival time’, which is the result of an adaptation of travel routines in the face of constraints caused by, in particular, time-varying congestion levels. We characterize the unpriced equilibrium, the social optimum as well as second-best situations where the availability of the pricing instruments is restricted. All of them entail a dispersed distribution of short-run preferred arrival times. We obtain the intriguing results that the dispersion is lower in the social optimum than in the unpriced equilibrium, and that the application of first-best short-run tolls does not induce efficient long-run choices of travel routines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号