首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One-way station-based carsharing systems allow users to return a rented car to any designated station, which could be different from the origin station. Existing research has been mainly focused on the vehicle relocation problem to deal with the travel demand fluctuation over time and demand imbalance in space. However, the strategic planning of the stations’ location and their capacity for one-way carsharing systems has not been well studied yet, especially when considering vehicle relocations simultaneously. This paper presents a Mixed-integer Non-linear Programming (MINLP) model to solve the carsharing station location and capacity problem with vehicle relocations. This entails considering several important components which are for the first time integrated in the same model. Firstly, relocation operations and corresponding relocation costs are taken into consideration to address the imbalance between trip requests and vehicle availability. Secondly, the flexible travel demand at various time steps is taken as the input to the model avoiding deterministic requests. Thirdly, a logit model is constructed to represent the non-linear demand rate by using the ratio of carsharing utility and private car utility. To solve the MINLP model, a customized gradient algorithm is proposed. The application to the SIP network in Suzhou, China, demonstrates that the algorithm can solve a real world large scale problem in reasonable time. The results identify the pricing and parking space rental costs as the key factors influencing the profitability of carsharing operators. Also, the carsharing station location and fleet size impact the vehicle relocation and carsharing patronage.  相似文献   

2.
This paper proposes a Continuum Approximation (CA) model for design of a one-way Electrical Vehicle (EV) sharing system that serves a metropolitan area. This model determines the optimal EV sharing station locations and the corresponding EV fleet sizes to minimize the comprehensive system cost, including station construction investment, vehicle charging, transportation and vehicle balancing, under stochastic and dynamic trip demands. This is a very complex problem due to the NP-hard nature of location design, the large number of individual users, and the stochasticity and dynamics of generated trips. Further, the considerable charging time required by EVs distinguishes this problem from traditional car sharing problems where a vehicle is immediately available for pickup after being dropped at a station. We find that the CA approach can overcome these modeling challenges by decomposing the studied area into a number of small neighborhoods that each can be approximated by an Infinite Homogeneous Plane (IHP). We find that the system cost of an IHP is a unimodal function of the station service area size and can be efficiently solved in a sub-linear time by the bisection algorithm. Then integrating the solutions of all IHPs yields an approximate solution to the original heterogeneous area. With numerical experiments, we show that the CA solution is able to estimate the total system cost of the discrete counterpart solution efficiently with good accuracy, even for large-scale heterogeneous problems. This implies that the proposed CA approach is capable of providing a near-optimum solution to the comprehensive design of a practical large-scale EV sharing system. With this model, we also conduct sensitivity analysis to reveal insights into how cost components and system design vary with key parameter values. As far as the author’s knowledge, this study is the first work that addresses design of an EV sharing system considering both longer-term location and fleet size planning and daily vehicle operations. The proposed CA model also extends the CA methodology literature from traditional location problems with stationary demand, single-facility based service to EV sharing problems considering dynamic demands, OD trips, and nonlinear vehicle charging times.  相似文献   

3.
As an alternative transportation paradigm, shared vehicle systems have become increasingly popular in recent years. Shared vehicle systems typically consist of a fleet of vehicles that are used several times each day by different users. One of the main advantages of shared vehicle systems is that they reduce the number of vehicles required to meet total travel demand. An added energy/emissions benefit comes when low-polluting (e.g., electric) vehicles are used in the system. In order to evaluate operational issues such as vehicle availability, vehicle distribution, and energy management, a unique shared vehicle system computer simulation model has been developed. As an initial case study, the model was applied to a resort community in Southern California. The simulation model has a number of input parameters that allow for the evaluation of numerous scenarios. Several measures of effectiveness have been determined and are calculated to characterize the overall system performance. For the case study, it was found that the most effective number of vehicles (in terms of satisfying customer wait time) is in the range of 3–6 vehicles per 100 trips in a 24 h day. On the other hand, if the number of relocations also is to be minimized, there should be approximately 18–24 vehicles per 100 trips. Various inputs to the model were varied to see the overall system response. The model shows that the shared vehicle system is most sensitive to the vehicle-to-trip ratio, the relocation algorithm used, and the charging scheme employed when electric vehicles are used. A preliminary cost analysis was also performed, showing that such a system can be very competitive with present transportation systems (e.g., rental cars, taxies, etc.).  相似文献   

4.
5.
In this paper, three innovative car-sharing systems for urban areas are proposed, based on fleets of individual intelligent vehicles with three service characteristics: instant access, open-ended reservations and one-way trips. These features provide high flexibility but create an uneven distribution of vehicles among stations. Therefore, relocation of vehicles must be performed. Three different system procedures are proposed: in the first system, relocations are performed by users; in the other two, vehicles relocate automatically, thanks to their automation. In the first two systems, vehicles are accessible only at stations, whereas in the third they are also accessible along roads. In order to provide transport managers with a tool to test systems in different realities, an object-oriented simulator is developed. The simulation provides outputs of system performance, in terms of user waiting times and system efficiency. The proposed systems are simulated for the city of Genoa, in Italy, and a comparative analysis is presented.  相似文献   

6.
Battery-only electric vehicles (BEVs) generally offer better air quality through lowered emissions, along with energy savings and security. The issue of long-duration battery charging makes charging-station placement and design key for BEV adoption rates. This work uses genetic algorithms to identify profit-maximizing station placement and design details, with applications that reflect the costs of installing, operating, and maintaining service equipment, including land acquisition. Fast electric vehicle charging stations (EVCSs) are placed across a congested city's network subject to stochastic demand for charging under a user-equilibrium traffic assignment. BEV users’ station choices consider endogenously determined travel times and on-site charging queues. The model allows for congested-travel and congested-station feedback into travelers’ route choices under elastic demand and BEV owners’ station choices, as well as charging price elasticity for BEV charging users.Boston-network results suggest that EVCSs should locate mostly along major highways, which may be a common finding for other metro settings. If 10% of current EV owners seek to charge en route, a user fee of $6 for a 30-min charging session is not enough for station profitability under a 5-year time horizon in this region. However, $10 per BEV charging delivers a 5-year profit of $0.82 million, and 11 cords across 3 stations are enough to accommodate a near-term charging demand in this Boston-area application. Shorter charging sessions, higher fees, and/or allowing for more cords per site also increase profits generally, everything else constant. Power-grid and station upgrades should keep pace with demand, to maximize profits over time, and avoid on-site congestion.  相似文献   

7.
This study explores how battery electric vehicle users choose where to fast-charge their vehicles from a set of charging stations, as well as the distance by which they are generally willing to detour for fast-charging. The focus is on fast-charging events during trips that include just one fast-charge between origin and destination in Kanagawa Prefecture, Japan. Mixed logit models with and without a threshold effect for detour distance are applied to panel data extracted from a two-year field trial on battery electric vehicle usage in Japan. Findings from the mixed logit model with threshold show that private users are generally willing to detour up to about 1750 m on working days and 750 m on non-working days, while the distance is 500 m for commercial users on both working and non-working days. Users in general prefer to charge at stations requiring a shorter detour and use chargers located at gas stations, and are significantly affected by the remaining charge. Commercial users prefer to charge at stations encountered earlier along their paths, while only private users traveling on working days show such preference and they turn to prefer the stations encountered later when choosing a station in peak hours. Only private users traveling on working days show a strong preference for free charging. Commercial users tend to pay for charging at a station within 500 m detour distance. The fast charging station choice behavior is heterogeneous among users. These findings provide a basis for early planning of a public fast charging infrastructure.  相似文献   

8.
The transportation sector is undergoing three revolutions: shared mobility, autonomous driving, and electrification. When planning the charging infrastructure for electric vehicles, it is critical to consider the potential interactions and synergies among these three emerging systems. This study proposes a framework to optimize charging infrastructure development for increasing electric vehicle (EV) adoption in systems with different levels of autonomous vehicle adoption and ride sharing participation. The proposed model also accounts for the pre-existing charging infrastructure, vehicle queuing at the charging stations, and the trade-offs between building new charging stations and expanding existing ones with more charging ports.Using New York City (NYC) taxis as a case study, we evaluated the optimum charging station configurations for three EV adoption pathways. The pathways include EV adoption in a 1) traditional fleet (non-autonomous vehicles without ride sharing), 2) future fleet (fully autonomous vehicles with ride sharing), and 3) switch-over from traditional to future fleet. Our results show that, EV adoption in a traditional fleet requires charging infrastructure with fewer stations that each has more charging ports, compared to the future fleet which benefits from having more scattered charging stations. Charging will only reduce the service level by 2% for a future fleet with 100% EV adoption. EV adoption can reduce CO2 emissions of NYC taxis by up to 861 Tones/day for the future fleet and 1100 Tones/day for the traditional fleet.  相似文献   

9.
Autonomous vehicles (AVs) represent potentially disruptive and innovative changes to public transportation (PT) systems. However, the exact interplay between AV and PT is understudied in existing research. This paper proposes a systematic approach to the design, simulation, and evaluation of integrated autonomous vehicle and public transportation (AV + PT) systems. Two features distinguish this research from the state of the art in the literature: the first is the transit-oriented AV operation with the purpose of supporting existing PT modes; the second is the explicit modeling of the interaction between demand and supply.We highlight the transit-orientation by identifying the synergistic opportunities between AV and PT, which makes AVs more acceptable to all the stakeholders and respects the social-purpose considerations such as maintaining service availability and ensuring equity. Specifically, AV is designed to serve first-mile connections to rail stations and provide efficient shared mobility in low-density suburban areas. The interaction between demand and supply is modeled using a set of system dynamics equations and solved as a fixed-point problem through an iterative simulation procedure. We develop an agent-based simulation platform of service and a discrete choice model of demand as two subproblems. Using a feedback loop between supply and demand, we capture the interaction between the decisions of the service operator and those of the travelers and model the choices of both parties. Considering uncertainties in demand prediction and stochasticity in simulation, we also evaluate the robustness of our fixed-point solution and demonstrate the convergence of the proposed method empirically.We test our approach in a major European city, simulating scenarios with various fleet sizes, vehicle capacities, fare schemes, and hailing strategies such as in-advance requests. Scenarios are evaluated from the perspectives of passengers, AV operators, PT operators, and urban mobility system. Results show the trade off between the level of service and the operational cost, providing insight for fleet sizing to reach the optimal balance. Our simulated experiments show that encouraging ride-sharing, allowing in-advance requests, and combining fare with transit help enable service integration and encourage sustainable travel. Both the transit-oriented AV operation and the demand-supply interaction are essential components for defining and assessing the roles of the AV technology in our future transportation systems, especially those with ample and robust transit networks.  相似文献   

10.
Moving toward sustainable mobility, the sharing economy business model emerges as a prominent practice that can contribute to the transition to sustainability. Using a system dynamics modeling approach, this paper investigates the impacts of an e-carsharing scheme in carbon emissions and in electric vehicle adoption. We study the VAMO scheme located in Fortaleza, Brazil, as the first e-carsharing scheme in the country. We study two policies combined: a VAMO planned growth policy and a retirement policy for conventional vehicles. Our results show that the VAMO incentive policy is an important factor to reduce emissions and to increase awareness of electric vehicles, highlighting the role of the government as an institutional entrepreneur, stimulating and sustaining the VAMO scheme. The retirement policy in combination with the VAMO incentive policy obtained the best results in our simulations, reducing 29% of CO2 emissions and increasing 36% electric vehicle adoption, when compared to the business-as-usual scenario. The main conclusions are that such e-carsharing schemes offer direct and indirect benefits to urban mobility (specially to electric vehicle adoption) and that they depend on how the government supports them.  相似文献   

11.
Recently, electric vehicles are gaining importance which helps to reduce dependency on oil, increases energy efficiency of transportation, reduces carbon emissions and noise, and avoids tail pipe emissions. Because of short daily driving distances, high mileage, and intermediate waiting time, fossil-fuelled taxi vehicles are ideal candidates for being replaced by battery electric vehicles (BEVs). Moreover, taxi BEVs would increase visibility of electric mobility and therefore encourage others to purchase an electric vehicle. Prior to replacing conventional taxis with BEVs, a suitable charging infrastructure has to be established. This infrastructure consists of a sufficiently dense network of charging stations taking into account the lower driving ranges of BEVs.In this case study we propose a decision support system for placing charging stations in order to satisfy the charging demand of electric taxi vehicles. Operational taxi data from about 800 vehicles is used to identify and estimate the charging demand for electric taxis based on frequent origins and destinations of trips. Next, a variant of the maximal covering location problem is formulated and solved to satisfy as much charging demand as possible with a limited number of charging stations. Already existing fast charging locations are considered in the optimization problem. In this work, we focus on finding regions in which charging stations should be placed rather than exact locations. The exact location within an area is identified in a post-optimization phase (e.g., by authorities), where environmental conditions are considered, e.g., the capacity of the power network, availability of space, and legal issues.Our approach is implemented in the city of Vienna, Austria, in the course of an applied research project that has been conducted in 2014. Local authorities, power network operators, representatives of taxi driver guilds as well as a radio taxi provider participated in the project and identified exact locations for charging stations based on our decision support system.  相似文献   

12.
A potential solution to reduce greenhouse gas (GHG) emissions in the transport sector is the use of alternative fuel vehicles (AFV). As global GHG emission standards have been in place for passenger cars for several years, infrastructure modelling for new AFV is an established topic. However, as the regulatory focus shifts towards heavy-duty vehicles (HDV), the market diffusion of AFV-HDV will increase as will planning the relevant AFV infrastructure for HDV. Existing modelling approaches need to be adapted, because the energy demand per individual refill increases significantly for HDV and there are regulatory as well as technical limitations for alternative fuel station (AFS) capacities at the same time. While the current research takes capacity restrictions for single stations into account, capacity limits for locations (i.e. nodes) – the places where refuelling stations are built such as highway entries, exits or intersections – are not yet considered. We extend existing models in this respect and introduce an optimal development for AFS considering (station) location capacity restrictions. The proposed method is applied to a case study of a potential fuel cell heavy-duty vehicle AFS network. We find that the location capacity limit has a major impact on the number of stations required, station utilization and station portfolio variety.  相似文献   

13.
This paper introduces a relocation model for free-floating Carsharing (FFCS) systems with conventional and electric vehicles (EVs). In case of imbalances caused by one-way trips, the approach recommends profit maximizing vehicle relocations. Unlike existing approaches, two types of relocations are distinguished: inter zone relocations moving vehicles between defined macroscopic zones of the operating area and intra zone relocations moving vehicles within such zones. Relocations are combined with the unplugging and recharging of EVs and the refueling of conventional vehicles. In addition, remaining pure service trips are suggested. A historical data analysis and zone categorization module enables the calculation of target vehicle distributions. Unlike existing approaches, macroscopic optimization steps are supplemented by microscopic rule-based steps. This enables relocation recommendations on the individual vehicle level with the exact GPS coordinates of the relocation end positions. The approach is practice-ready with low computational times even for large-scale scenarios.To assess the impact of relocations on the system’s operation, the model is applied to a FFCS system in Munich, Germany within three real world field tests. Test three shows the highest degree of automation and represents the final version of the model. Its evaluation shows very promising results. Most importantly, the profit is increased by 5.8% and the sales per vehicle by up to 10%. The mean idle time per trip end is decreased by 4%.  相似文献   

14.
The paper concerns the conceptual design of a transport system for pedestrian areas. The proposed transport system is based on a fleet of eco-sustainable Personal Intelligent City Accessible Vehicles (PICAVs). The vehicles are shared through the day by different users and the following specific services will be provided: instant access, open ended reservation and one way trips. Referring to the proposed transport system, a new methodology to optimise the fleet dimension and its distribution among the stations is proposed in this paper. The problem faced is an optimisation problem where the cost function to be minimised takes into account both the transport system cost and the user costs that depend on the waiting times. A random search algorithm has been adopted. Given a fleet dimension and its distribution among the stations, the waiting times of the users are assessed by a microscopic simulation. The simulation model tracks the second-by-second activity of each PICAV user, as well as the second-by-second activity of each vehicle. The overall methodology has been implemented in an object-oriented simulator. The proposed transport system has been planned and simulated for the historical city centre of Genoa, Italy.  相似文献   

15.
Vehicle classification is an important traffic parameter for transportation planning and infrastructure management. Length-based vehicle classification from dual loop detectors is among the lowest cost technologies commonly used for collecting these data. Like many vehicle classification technologies, the dual loop approach works well in free flow traffic. Effective vehicle lengths are measured from the quotient of the detector dwell time and vehicle traversal time between the paired loops. This approach implicitly assumes that vehicle acceleration is negligible, but unfortunately at low speeds this assumption is invalid and length-based classification performance degrades in congestion.To addresses this problem, we seek a solution that relies strictly on the measured effective vehicle length and measured speed. We analytically evaluate the feasible range of true effective vehicle lengths that could underlie a given combination of measured effective vehicle length, measured speed, and unobserved acceleration at a dual loop detector. From this analysis we find that there are small uncertainty zones where the measured length class can differ from the true length class, depending on the unobserved acceleration. In other words, a given combination of measured speed and measured effective vehicle length falling in the uncertainty zones could arise from vehicles with different true length classes. Outside of the uncertainty zones, any error in the measured effective vehicle length due to acceleration will not lead to an error in the measured length class. Thus, by mapping these uncertainty zones, most vehicles can be accurately sorted to a single length class, while the few vehicles that fall within the uncertainty zones are assigned to two or more classes. We find that these uncertainty zones remain small down to about 10 mph and then grow exponentially as speeds drop further.Using empirical data from stop-and-go traffic at a well-tuned loop detector station the best conventional approach does surprisingly well; however, our new approach does even better, reducing the classification error rate due to acceleration by at least a factor of four relative to the best conventional method. Meanwhile, our approach still assigns over 98% of the vehicles to a single class.  相似文献   

16.
The emergence of electric unmanned aerial vehicle (E-UAV) technologies, albeit somewhat futuristic, is anticipated to pose similar challenges to the system operation as those of electric vehicles (EVs). Notably, the charging of EVs en-route at charging stations has been recognized as a significant type of flexible load for power systems, which often imposes non-negligible impacts on the power system operator’s decisions on electricity prices. Meanwhile, the charging cost based on charging time and price is part of the trip cost for the users, which can affect the spatio-temporal assignment of E-UAV traffic to charging stations. This paper aims at investigating joint operations of coupled power and electric aviation transportation systems that are associated with en-route charging of E-UAVs in a centrally controlled and yet dynamic setting, i.e., with time-varying travel demand and power system base load. Dynamic E-UAV charging assignment is used as a tool to smooth the power system load. A joint pricing scheme is proposed and a cost minimization problem is formulated to achieve system optimality for such coupled systems. Numerical experiments are performed to test the proposed pricing scheme and demonstrate the benefits of the framework for joint operations.  相似文献   

17.
Shared autonomous vehicles (SAVs) are the next major evolution in urban mobility. This technology has attracted much interest of car manufacturers aiming at playing a role as transportation network companies (TNCs) and carsharing agencies in order to gain benefits per kilometer and per ride. It is predicted that the majority of future SAVs would most probably be electric. It is therefore important to understand how limited vehicle range and the configuration of charging infrastructure will affect the performance of shared autonomous electric vehicle (SAEV) services. In this study, we aim to explore the impacts of charging station placement, charging types (including normal and rapid charging, and battery swapping), and vehicle battery capacities on service efficiency. We perform an agent-based simulation of SAEVs across the Rouen Normandie metropolitan area in France. The simulation process features impact assessment by considering dynamic demand responsive to the network and traffic.Research results suggest that the performance of SAEVs is strongly correlated with the charging infrastructure. Importantly, faster charging infrastructure and placement of charging locations according to minimized distances between demand hubs and charging stations result in a higher performance. Further analysis indicates the importance of dispersing charging stations across the service area and its impacts on service effectiveness. The results also underline that SAEV battery capacity has to be selected carefully such that to avoid the overlaps between demand and charging peak times. Finally, the simulation results show that the performance indicators of SAEV service are significantly improved by providing battery swapping infrastructure.  相似文献   

18.
Roadway usage, particularly by large vehicles, is one of the fundamental factors determining the lifespan of highway infrastructure. Operating agencies typically employ expensive classification stations to monitor large vehicle usage. Meanwhile, single-loop detectors are the most common vehicle detector and many new, out-of-pavement detectors seek to replace loop detectors by emulating the operation of single-loop detectors. In either case, collecting reliable length data from these detectors has been considered impossible due to the noisy speed estimates provided by conventional data aggregation at single-loop detectors. This research refines non-conventional techniques for estimating speed at single-loop detectors, yielding estimates that approach the accuracy of a dual-loop detector’s measurements. Employing these speed estimation advances, this research brings length based vehicle classification to single-loop detectors (and by extension, many of the emerging out-of-pavement detectors). The classification methodology is evaluated against concurrent measurements from video and dual-loop detectors. To capture higher truck volumes than empirically observed, a process of generating synthetic detector actuations is developed. By extending vehicle classification to single-loop detectors, this work leverages the existing investment deployed in single-loop detector count stations and real-time traffic management stations. The work also offers a viable treatment in the event that one of the loops in a dual-loop detector classification station fails and thus, also promises to improve the reliability of existing classification stations.  相似文献   

19.
This paper studies the effect on carbon emissions of consolidation of shipments on trucks. New positioning and communication technologies, as well as decision support systems for vehicle routing, enable better utilization of vehicle capacity, reduced travel distance, and thereby carbon emission reductions. We present a novel carbon emission analysis method that determines the emission savings obtained by an individual transport provider, who receives customer orders for outbound deliveries as well as pickup orders from supply locations. The transport provider can improve vehicle utilization by performing pickups and deliveries jointly instead of using separate trucks. In our model we assume that the transport provider minimizes costs by use of a tool that calculates detailed vehicle routing plans, i.e., an assignment of each transport order to a specific vehicle in the fleet, and the sequence of customer visit for each vehicle. We compare a basic set-up, in which pickups and deliveries are segregated and performed with separate vehicles, with two consolidation set-ups where pickups and deliveries may be mixed more or less freely on a single vehicle. By allowing mixing, the average vehicle load will increase and the total driven distance will decrease. To compare carbon emissions for the three set-ups, we use a carbon assessment method that uses the distance driven and the average load factor. An increase in the load factor can reduce part of the emission savings from consolidation. We find that emission savings are relatively large in case of small vehicles and for delivery and pickup locations that are relatively far from the depot. However, if a truck visits many demand and supply locations before returning to the depot, we observe negligible carbon emission decreases or even emission increases for consolidation set-ups, meaning that in such cases investing in consolidation through joint pickups and deliveries may not be effective. The results of our study will be useful for transport users and providers, policymakers, as well as vehicle routing technology vendors.  相似文献   

20.
Among dispatching control approaches, the holding option has attracted the most attention in bus control. However, holding a vehicle at a transfer station may exacerbate the delays because more passengers might accumulate at downstream stations and may also affect other connecting routes at other transfer stations. Our problem is to minimize the total costs of dispatching ready vehicles at each transfer station along coordinated routes in a multi‐hub transit network. The total costs include the waiting cost for on‐board passengers, the missed connection costs for late arrival passengers at the subject transfer station and possible transfer costs at downstream transfer stations. We develop a heuristic algorithm to optimize the holding times based on real time information about late vehicles. The results show that ready vehicles should be held longer when the arrival variances of late vehicles are small or when many late connecting passengers are expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号