首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Critical infrastructure networks, such as transport and power networks, are essential for the functioning of a society and economy. The rising transport demand increases the congestion in railway networks and thus they become more interdependent and more complex to operate. Also, an increasing number of disruptions due to system failures as well as climate changes can be expected in the future. As a consequence, many trains are cancelled and excessively delayed, and thus, many passengers are not reaching their destinations which compromises customers need for mobility. Currently, there is a rising need to quantify impacts of disruptions and the evolution of system performance. This review paper aims to set-up a field-specific definition of resilience in railway transport and gives a comprehensive, up-to-date review of railway resilience papers. The focus is on quantitative approaches. The review analyses peer-reviewed papers in Web of Science and Scopus from January 2008 to August 2019. The results show a steady increase of the number of published papers in recent years. The review classifies resilience metrics and approaches. It has been recognised that system-based metrics tend to better capture effects on transport services and transport demand. Also, mathematical optimization shows a great potential to assess and improve resilience of railway systems. Alternatively, data-driven approaches could be potentially used for detailed ex-post analysis of past disruptions. Finally, several rising future scientific topics are identified, spanning from learning from historical data, to considering interdependent critical systems and community resilience. Practitioners can also benefit from the review to understand a common terminology, recognise possible applications for assessing and designing resilient railway transport systems.  相似文献   

2.
Efforts to reduce energy use in freight transportation usually center around “mode-based” approaches, namely improving the energy efficiency of energy intensive modes, such as truck, and shifting more freight to energy efficient modes, such as rail. In the first part of this paper we review the recent trends and future prospects for these mode-based approaches, finding that despite substantial improvement in the technological efficiency of freight modes and robust growth in the use of intermodal rail since 1980, total freight energy use across all modes in the US has grown by approximately 33%, with proportional growth in carbon emissions. In the second part of the paper we propose use of a “commodity-based” approach, in which freight energy use is disaggregated by contribution of major commodity groups, in order to support efficiency improvement at the commodity level. Two potential applications of the commodity based approach, namely (1) life cycle analysis of energy use for major commodity groups and (2) spatial analysis of freight patterns, are demonstrated using the 1993 US Commodity Flow Survey data. Results of these preliminary findings suggest that commodity groups vary widely in the ratio of energy use in production to energy use in transport, and that for many commodity groups, there may be substantial opportunities for saving energy by redistributing flow patterns. Through development of the commodity-based approach, we also identify the collaborative involvement of shippers and carriers as a key point in improving energy efficiency, since it can be used to both make the mode-based approach more effective and address new issues such as the underlying growth in tonne-km. Benefits for air quality and other transportation issues are also discussed.  相似文献   

3.
Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain developing mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice (e.g. Cacchiani et al., 2014; Borndörfer et al., 2010), with a few notable exceptions. In this paper we address three individual success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will discuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that mathematical optimization can support the planning of railway resources. Thus, mathematical models and optimization can lead to a greater efficiency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.  相似文献   

4.
Big data analytics (BDA) has increasingly attracted a strong attention of analysts, researchers and practitioners in railway transportation and engineering. This urges the necessity for a review of recent research development in this field. This survey aims to provide a comprehensive review of the recent applications of big data in the context of railway engineering and transportation by a novel taxonomy framework, proposed by Mayring (2003). The survey covers three areas of railway transportation where BDA has been applied, namely operations, maintenance and safety. Also, the level of big data analytics, types of big data models and a variety of big data techniques have been reviewed and summarized. The results of this study identify the existing research gaps and thereby directions of future research in BDA in railway transportation systems.  相似文献   

5.

In recent years, Chinese railway freight transport has been facing great challenges from transport market reformation and economic expansion. Although the total volume of railway freight has been increasing, its market share has decreased greatly, especially at the beginning of migration from command economy to market economy. This paper considers four aspects believed to be responsible for the loss of the railway freight market share. First, we review the history and current situation of the Chinese railway freight transport and study the relationship between economic development and freight transport in China. Second, the causes resulting in the loss of the market share of railway freight are analysed in detail. Third, the current measures taken by Chinese Railways (CR) to restore its competitiveness are discussed. The effects of these measures on railway traffic volume, market share and productivity are also studied. Finally, the way forward for the future of CR is discussed. It is concluded that CR has not yet adapted sufficiently to new economic conditions, although in recent years progress has been made. Further reform will be needed.  相似文献   

6.
Current car technologies will not solve upcoming challenges of mitigating greenhouse gas emissions in road transport. Projections of the market penetration by alternative drive train technologies are controversial regarding both forecast market shares and applied scientific methods. Accepting this latter challenge, we provide a (so far missing) overview of methods applied in this field and give some recommendations for further work. Our focus is to classify the applied methods into a convenient pattern and to analyse models from the recent scientific literature which consider the electrification of light-duty vehicles. We differentiate the following bottom-up approaches: Econometric models with disaggregated data (such as discrete choice), and agent-based simulation models. The group of top-down models are subdivided into econometric models with aggregated data (e.g. vehicle stock data), system dynamics, as well as integrated assessment models with general equilibrium models. It becomes obvious that some methods have a stronger methodological background whereas others require comprehensive data sets or can be combined more flexibly with other methods. Even though there is no dominant method, we can identify a trend in the literature towards data-driven hybrid approaches, which considers micro and macro aspects influencing the market penetration of electric vehicles.  相似文献   

7.
There has been significant growth in research on intermodal transport in freight distribution since the 1990s. Differentiating itself from previously published literature reviews, this paper evaluates the current state of this research using Systematic Literature Review methodology. The complementary aims are: (a) to identify the research lines developed and to propose a criterion for classifying the literature, and (b) to discuss the empirical evidence that identifies existing interrelationships. The analysis has enabled three main lines of research to be identified. The first research line, basic principles of intermodal transport, groups together works related to the definition of intermodal transport and the results obtained using this transportation system. The second, improvements to the way that intermodal transport systems work, frames elements and variables that impact intermodal transport systems’ logistics efficiency, such as quality of service, information and communication systems, and freight planning and linkages among system operators to provide an adequate service. Finally, the third line, intermodal transport system modelling, identifies the main variables used to optimise these transport systems, the different focuses and approaches used in modelling, and the advantages and disadvantages of each focus. These research lines take in more specific sublines that incorporate articles that develop related research questions. Lastly, the discussion of the content of each of these research sublines enables us to identify gaps in the literature and comment on directions for future research.  相似文献   

8.
Safety is key to civil aviation. To further improve its already respectable safety records, the airline industry is transitioning towards a proactive approach which anticipates and mitigates risks before incidents occur. This approach requires continuous monitoring and analysis of flight operations; however, modern aircraft systems have become increasingly complex to a degree that traditional analytical methods have reached their limits – the current methods in use can only detect ‘hazardous’ behaviors on a pre-defined list; they will miss important risks that are unlisted or unknown. This paper presents a novel approach to apply data mining in flight data analysis allowing airline safety experts to identify latent risks from daily operations without specifying what to look for in advance. In this approach, we apply a Gaussian Mixture Model (GMM) based clustering to digital flight data in order to detect flights with unusual data patterns. These flights may indicate an increased level of risks under the assumption that normal flights share common patterns, while anomalies do not. Safety experts can then review these flights in detail to identify risks, if any. Compared with other data-driven methods to monitor flight operations, this approach, referred to as ClusterAD-DataSample, can (1) better establish the norm by automatically recognizing multiple typical patterns of flight operations, and (2) pinpoint which part of a detected flight is abnormal. Evaluation of ClusterAD-DataSample was performed on two sets of A320 flight data of real-world airline operations; results showed that ClusterAD-DataSample was able to detect abnormal flights with elevated risks, which make it a promising tool for airline operators to identify early signs of safety degradation even if the criteria are unknown a priori.  相似文献   

9.
With a large number of railway development projects in Europe and worldwide, which once completed will be serving rail passengers of the future, this paper aims to take a step back and evaluate current railway systems performance. The objectives are to compare statistical data on various passenger-related parameters of the railway system in a number of selected European countries and draw conclusions on the level of their performance when compared to the European average.Analyses of publically available statistical data, extracted from the Eurostat service at a European level will allow for a comparison of various indicators which influence the performance of the railway systems from an infrastructure and operational perspectives. The analyses will also allow identifying key performance indicators for the accurate assessment of the rail systems.The paper will highlight case studies for various parameters which are important to stakeholders of the railways, including infrastructure managers, rail operators, policy makers and the end users. This knowledge will be to the benefit of today’s railway industry as well as the rail systems of the future, as it will show trends drew upon existing data which might continue in the future.  相似文献   

10.
Railway traffic is heavily affected by disturbances and/or disruptions, which are often cause of delays and low performance of train services. The impact and the propagation of such delays can be mitigated by relying on automatic tools for rescheduling traffic in real-time. These tools predict future track conflict based on current train information and provide suitable control measures (e.g. reordering, retiming and/or rerouting) by using advanced mathematical models. A growing literature is available on these tools, but their effects on real operations are blurry and not yet well known, due to the very scarce implementation of such systems in practice.In this paper we widen the knowledge on how automatic real-time rescheduling tools can influence train performance when interfaced with railway operations. To this purpose we build up a novel traffic control framework that couples the state-of-the art automatic rescheduling tool ROMA, with the realistic railway traffic simulation environment EGTRAIN, used as a surrogate of the real field. At regular times ROMA is fed with current traffic information measured from the field (i.e. EGTRAIN) in order to predict possible conflicts and compute (sub) optimal control measures that minimize the max consecutive delay on the network. We test the impact of the traffic control framework based on different types of interaction (i.e. open loop, multiple open loop, closed loop) between the rescheduling tool and the simulation environment as well as different combinations of parameter values (such as the rescheduling interval and prediction horizon). The influence of different traffic prediction models (assuming e.g. aggressive versus conservative driving behaviour) is also investigated together with the effects on traffic due to control delays of the dispatcher in implementing the control measures computed by the rescheduling tool.Results obtained for the Dutch railway corridor Utrecht–Den Bosch show that a closed loop interaction outperforms both the multiple open loop and the open loop approaches, especially with large control delays and limited information on train entrance delays and dwell times. A slow rescheduling frequency and a large prediction horizon improve the quality of the control measure. A limited control delay and a conservative prediction of train speed help filtering out uncertain traffic dynamics thereby increasing the effectiveness of the implemented measures.  相似文献   

11.
Climate change poses critical challenges for rail infrastructure and operations. However, the systematic analysis of climate risks and the associated costs of tackling them, particularly from a quantitative perspective, is still at an embryonic phase due to the kaleidoscopic nature of climate change impacts and lack of precise climatic data. To cope with such challenges, an advanced Fuzzy Bayesian Reasoning (FBR) model is applied in this paper to understand climate threats of the railway system. This model ranks climate risks under high uncertainty in data and comprehensively evaluates these risks by taking account of infrastructure resilience and specific aspects of severity of consequence. Through conducting a nationwide survey on the British railway system, it dissects the status quo of primary climate risks. The survey implies that the top potential climate threats are heavy precipitation and floods. The primary risks caused by the climate threats are bridges collapsing and bridge foundation damage due to flooding and landslips. The findings can aid transport planners to prioritise climate risks and develop rational adaptation measures and strategies.  相似文献   

12.
文章分析了阿拉善左旗公路管理养护现状及存在的问题,提出了建立阿拉善地区农村公路养护管理长效机制的思路,为该地区加强农村公路养护管理,实现交通事业可持续发展提供参考。  相似文献   

13.
The present paper presents a data-driven method for assessing the resilience of the European passenger transport network during extreme weather events. The method aims to fill in the gap of current research efforts regarding the quantification of impacts attributed to climate change and the identification of substitutability opportunities between transport modes in case of extreme weather events (EWE). The proposed method consists of three steps concerning the probability estimation of an EWE occurring within a transportation network, the assessment of its impacts and the passengers’ flow shift between various transport modes. A mathematical formulation for the proposed data-driven method is provided and applied in an indicative European small-scale network, in order to assess the impacts of EWE on modal choice. Results are expressed in passenger differentiated flows and the paper concludes with future research steps and directions.  相似文献   

14.
Railway rapid transit systems are key stones for the sustainability of mass transit in developed countries. The overwhelming majority of these railway systems are direct-current (DC) electrified and several energy-saving techniques have been proposed in the literature for these systems. The use of regenerative-braking in trains is generally recognised as the main tool to improve the efficiency of DC-electrified mass transit railway systems but the energy recovered in braking cannot always be handled efficiently, above all in low traffic-density situations. Several emerging technologies as energy storage systems or reversible traction substations have the potential for making it possible to efficiently use train-braking. However, a systematic evaluation of their effect is missing in the literature.In this paper, a deep, rigorous and comprehensive study on the factors which affect energy issues in a DC-electrified mass transit railway system is carried out. This study clarifies what the actual potential is for energy saving in each situation. Then, a methodology to asses several energy-saving techniques to improve energy efficiency in DC-electrified mass transit systems is presented, constituting the main contribution of this paper. This methodology has been conceived to help operators in assessing the effect of railway-infrastructure emerging technologies in transit systems, so making it possible to shape planning, capacity, etc. It is stepped out in three basic movements. First of all, a traffic-density scan analysis is conducted in order to clarify the effect of the headway on system behaviour. Secondly, several traffic-density scenarios are simulated for a set of infrastructure-expanded cases. Finally, annual energy saving is evaluated by applying a realistic operation timetable. This methodology has been applied to a case study in Madrid Metro (Spain) to illustrate the steps of its application and the effect of several energy-saving techniques on this specific system. Results confirm that regenerative braking generally leads to an important increase of system energy efficiency – especially at high traffic-density scenarios. It has also been proved that infrastructure improvements can also contribute to energy savings and their contributions are more significant at low traffic densities. Annual energy results have been obtained, which may lead to investment decisions by carrying out an appropriate economic assessment based on cost analysis.The main results of the study presented here are likely to apply to other electric traction systems, at least qualitatively.  相似文献   

15.
This paper addresses the problem of constructing periodic timetables for train operations. We use a mathematical model consisting of periodic time window constraints by means of which arrival and departure times can be related pairwise on a clock, rather than on a linear time axis. Constructing a timetable, then, means solving a set of such constraints. This problem is known to be hard, i.e. it is NP-complete. We describe a new algorithm to solve the problem based on constraint generation and work out a real-life example. It appears that, for problem instances of modest, yet non-trivial, size, the algorithm performs very well, which opens a way to thorough performance analysis of railway systems by studying a large number of possible future timetables.  相似文献   

16.
Abstract

Attempts to integrate sustainability in the decision-making process for transport infrastructure projects continue to gain momentum. A number of tools and methodological frameworks are available — such as rating systems, traditional decision-making techniques, checklists, and different evaluation frameworks and models. While these tools are highly valuable, some practical issues remain unsolved. There is also a need for more standardized tools to appraise the sustainability of transport projects. This paper is a presentation of a review on the current assessment tools of sustainability applied to transport infrastructure projects. The preliminary part of the paper is an explanatory and comparative analysis of the tools and methods in terms of their effectiveness to appraise sustainability. The analysis is a critical evaluation of the current state of the art to identify the limitations of existing approaches, point out new areas of research, and propose a sustainability appraisal agenda for the future.  相似文献   

17.
Railway transportation provides sustainable, fast and safe transport. Its attractiveness is linked to a broad concept of service reliability: the capability to adhere to a timetable in the presence of delays perturbing traffic. To counter these phenomena, real-time rescheduling can be used, changing train orders and times, according to rules of thumb, or mathematical optimization models, minimizing delays or maximizing punctuality. In the literature, different indices of robustness, reliability and resilience are defined for railway traffic. We review and evaluate these indices applied to railway traffic control, comparing optimal rescheduling approaches such as Open Loop and Closed Loop control, to a typical First-Come-First-Served dispatching rule, and following the timetable (no-action). This experimental analysis clarifies the benefits of automated traffic control for infrastructure managers, railway operators and passengers. The timetable order, normally used in assessing a-priori reliability, systematically overestimates unreliability of operations that can be reduced by real-time control.  相似文献   

18.
Several electrification systems based on renewable energy power sources (first of all, solar energy) are discussed in respect to their applicability to railway transport and, in particular, to suburban electric trains. Two systems are considered with basic technical details and economic estimation, both including the onboard bank of batteries and the photovoltaic converters (PVC) of solar energy for compensation of energy expenses, which could be positioned either on stations or on wagon's roofs. Sun‐tracking systems and their effect on the solar energy conversion efficiency are discussed in application to stationary and moving PVC platforms. An analysis made shows that introduction of the “green” systems discussed will not only have positive ecological impact, but also can bring a notable economical effect even with today's components, while it could be considerably greater with the usage of new PVCs, which are being developed by the authors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Savings in travel time and more specifically their monetary value typically constitute the main benefit to justify major investment in transport schemes. However, worthwhile use of travel time is an increasingly prominent phenomenon of the digital age. Accordingly, questions are increasingly being asked regarding whether values of time used by countries around the world based on their appraisal approaches are too high. This paper offers the most comprehensive examination of our theoretical and empirical understandings of international appraisal approaches and how they account for worthwhile use of travel time. It combines the economics perspective with wider social science insight and reaches the conclusion that past revolutions in transport that have made longer and quicker journeys possible are now joined by a digital revolution that is reducing the disutility of travel time. This revolution offers potential economic benefit that comes at a fraction of the cost of major investments in transport that are predicated on saving travel time. The paper highlights the challenges faced in both current and indeed potential alternative future appraisal approaches. Such challenges are rooted in the difficulty of measuring time use and productivity with sufficient accuracy and over time to credibly account for how travel time factors into the economic outcomes from social and working practices in the knowledge economy. There is a need for further research to: establish how improvements in the opportunities for and the quality of worthwhile use of travel time impact on the valuation of travel time savings for non-business travel; improve our understanding of how productive use of time impacts on the valuation of time savings for business travellers; and estimate how these factors have impacted on the demand for different modes of travel.  相似文献   

20.
Transport demand for containers has been increasing for decades, which places pressure on road transport. As a result, rail transport is stimulated to provide better intermodal freight transport services. This paper investigates mathematical models for the planning of container movements in a port area, integrating the inter-terminal transport of containers (ITT, within the port area) with the rail freight formation and transport process (towards the hinterland). An integer linear programming model is used to formulate the container transport across operations at container terminals, the network interconnecting them, railway yards and the railway networks towards the hinterland. A tabu search algorithm is proposed to solve the problem. The practical applicability of the algorithm is tested in a realistic infrastructure case and different demand scenarios. Our results show the degree by which internal (ITT) and external (hinterland) transport processes interact, and the potential for improvement of overall operations when the integrated optimization proposed is used. Instead, if the planning of containers in the ITT system is optimized as a stand-alone problem, the railway terminals may suffer from longer delay times or additional train cancellations. When planning the transport of 4060 TEU containers within one day, the benefits of the ITT planning without considering railway operations account for 17% ITT cost reduction but 93% railway operational cost growth, while the benefits of integrating ITT and railway account for a reduction of 20% in ITT cost and 44% in railway operational costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号