共查询到20条相似文献,搜索用时 31 毫秒
1.
An equivalent continuous time optimal control problem is formulated to predict the temporal evolution of traffic flow pattern on a congested multiple origin-destination network, corresponding to a dynamic generalization of Wardropian user equilibrium. Optimality conditions are derived using the Pontryagin minimum principle and given economic interpretations, which are generalizations of similar results previously reported for single-destination networks. Analyses of sufficient conditions for optimality and of singular controls are also given. Under the steady-state assumptions, the model is shown to be a proper dynamic extension of Beckmann's mathematical programming problem for a static user equilibrium traffic assignment. 相似文献
2.
In this paper, a predictive dynamic traffic assignment model in congested capacity-constrained road networks is formulated. A traffic simulator is developed to incrementally load the traffic demand onto the network, and updates the traffic conditions dynamically. A time-dependent shortest path algorithm is also given to determine the paths with minimum actual travel time from an origin to all the destinations. The traffic simulator and time-dependent shortest path algorithm are employed in a method of successive averages to solve the dynamic equilibrium solution of the problem. A numerical example is given to illustrate the effectiveness of the proposed method. 相似文献
3.
《Transportation Research Part A: Policy and Practice》2003,37(6):539-554
Characteristics of time gaps (that is, the time separation between the rear of the lead vehicle and the front of the following vehicle) in congested freeway flow provide an important link between microscopic and macroscopic traffic flow. Although individual time gaps are a microscopic phenomenon, average time gaps can easily be determined from commonly collected macroscopic traffic flow data. Data from San Diego freeways and the Queen Elizabeth Way in Ontario, Canada are analyzed to show that average time gaps in congested flow are essentially constant with respect to speed; that they vary considerably between lanes at a single location and, for the same lane, from site to site; that they display considerable scatter; and that at some sites there is a distinct increase in average time gaps in the median lane in the transition to congested flow but at others there is no change or a slight reduction. The variability of average time gaps is not easily explained, although differences in driver populations may partly explain differences among different sites. Hysteresis due to acceleration and deceleration does not appear to be an explanation for the high degree of scatter in average time gaps, since no positive correlation was found between speed changes and average time gaps. 相似文献
4.
This research proposes an equilibrium assignment model for congested public transport corridors in urban areas. In this model, journey times incorporate the effect of bus queuing on travel times and boarding and alighting passengers on dwell times at stops. The model also considers limited bus capacity leading to longer waiting times and more uncomfortable journeys. The proposed model is applied to an example network, and the results are compared with those obtained in a recent study. This is followed by the analysis and discussion of a real case application in Santiago de Chile. Finally, different boarding and alighting times and different vehicle types are evaluated. In all cases, demand on express services tends to be underestimated by using constant dwell time assignment models, leading to potential planning errors for these lines. The results demonstrate the importance of considering demand dependent dwell times in the assignment process, especially at high demand levels when the capacity constraint should also be considered. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
5.
Optimization of traffic lights in a congested network is formulated as a linear programming problem. The formulation adapted here takes into account particular capacity constraints for road links and for intersections. A necessary prerequisite for the determination of optimal green times is that representative a-priori information about the origin-destination and route choice pattern inside the network is available. Because any particular control strategy temporarily alters the effective turning rates at intersections, an iterative procedure is proposed here which accomplishes convergence of optimal signal control and resulting O-D flows. The efficiency of this optimization procedure is demonstrated in a case study for a network with fifteen intersections. 相似文献
6.
Thanks to its high dimensionality and a usually non-convex constraint set, system optimal dynamic traffic assignment remains one of the most challenging problems in transportation research. This paper identifies two fundamental properties of the problem and uses them to design an efficient solution procedure. We first show that the non-convexity of the problem can be circumvented by first solving a relaxed problem and then applying a traffic holding elimination procedure to obtain the solution(s) of the original problem. To efficiently solve the relaxed problem, we explore the relationship between the relaxed problems based on different traffic flow models (PQ, SQ, CTM) and a minimal cost flow (MCF) problem for a special space-expansion network. It is shown that all the four problem formulations produce the same minimal system cost and share one common solution which does not involve inside queues in the network. Efficient solution algorithms such as the network simplex method can be applied to solve the MCF problem and identify such an optimal traffic pattern. Numerical examples are also presented to demonstrate the efficiency of the proposed solution procedure. 相似文献
7.
The similarity between link flows obtained from deterministic and stochastic equilibrium traffic assignment models is investigated at different levels of congestion. A probit-based stochastic assignment is used (over a congested network) where the conditions for equilibrium are those given by Daganzo and Sheffi (1977). Stochastic equilibrium flows are generated using an iterative procedure with predetermined step sizes, and the resulting assignment is validated on the basis of the equilibrium criteria. The procedure is intended to assist in the choice of the most appropriate assignment algorithm for a given level of congestion. 相似文献
8.
S. C. Wong 《Transportation Research Part B: Methodological》1998,32(8):567-581
Consider a city with several highly compact central business districts (CBD), and the commuters’ destinations from each of them are dispersed over the whole city. Since at a particular location inside the city the traffic movements from different CBDs share the same space and do not cancel out each other as in conventional fluid flow problems albeit travelling in different directions, the traffic flows from a CBD to the destinations over the city are considered as one commodity. The interaction of the traffic flows among different commodities is governed by a cost–flow relationship. The case of variable demand is considered. The primal formulation of the continuum equilibrium model is given and proved to satisfy the user optimal conditions, and the dual formulation of the problem and its complementary conditions are also discussed. A finite element method is then employed to solve the continuum problem. A numerical example is given to illustrate the effectiveness of the proposed method. 相似文献
9.
A schedule-based time-dependent trip assignment model for transit networks is presented. First the transit network model is formulated using the schedule-based approach, in which the vehicles are assumed to arrive punctually in accordance with a scheduled time-table. Based on a previously developed time-dependent shortest path algorithm, an all-or-nothing network loading procedure is employed to assign the passenger trips onto the network. Both the passenger demand and scheduled time-table are time-varying. This provides a versatile tool for the evaluation of the performance of transit networks subject to peak period loading. A case study using the Mass Transit Railway System in Hong Kong is given to illustrate the potential applications of the model. 相似文献
10.
Fabien Leurent 《先进运输杂志》2012,46(2):112-138
Seating or standing make distinct on‐board states to a transit rider, yielding distinct discomfort costs, with potential influence on the passenger route choice onto the transit network. The paper provides a transit assignment model that captures the seating capacity and its occupancy along any transit route. The main assumptions pertain to: the seat capacity by service route, selfish user behaviour, a seat allocation process with priority rules among the riders, according to their prior state either on‐board or at boarding. To each transit leg from access to egress station is associated a set of ‘service modes’, among which the riders are assigned in a probabilistic way, conditionally on their priority status and the ratio between the available capacity and the flow of them. Thus the leg cost is a random variable, with mean value to be included in the trip disutility. Computationally efficient algorithms are provided for, respectively, loading the leg flows and evaluating the leg costs along a transit line. At the network level, a hyperpath formulation is provided for supply‐demand equilibrium, together with a property of existence and an method of successive averages equilibration algorithm. It is shown that multiple equilibria may arise. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
This study proposes a potential-based dynamic pedestrian flow assignment model to optimize the evacuation time needed for all pedestrians to leave an indoor or outdoor area with internal obstacles and multiple exits, e.g., railway station, air terminal, plaza, and park. In the model, the dynamic loading of pedestrian flows on a two-dimensional space is formulated by a cell transmission model, the movement of crowds is driven by space potential, and the optimization of evacuation time is solved by a proportional swapping process. In this way, the proposed model can be applied to not only efficiently optimize the evacuation process of a crowd with large scale but also recognize local congestion dynamics during crowd evacuation. Finally, a set of numerical examples are presented to show the proposed model’s effectiveness for optimizing crowd evacuation process and its application to design a class of variable guide sign systems. 相似文献
12.
13.
《Transportation Research Part B: Methodological》1999,33(2):107-121
Using the schedule-based approach, in which scheduled time-tables are used to describe the movement of vehicles, a dynamic transit assignment model is formulated. Passengers are assumed to travel on a path with minimum generalized cost which consists of four components: in-vehicle time; waiting time; walking time; and a time penalty for each line change. With the exception of in-vehicle time, each of the other cost components is weighted by a sensitivity coefficient which varies among travelers and is defined by a density function. This time-dependent and stochastic minimum path is generated by a specially developed branch and bound algorithm. The assignment procedure is conducted over a period in which both passenger demand and train headways are varying. Due to the stochastic nature of the assignment problem, a Monte Carlo approach is employed to solve the problem. A case study using the Mass Transit Railway System in Hong Kong is given to demonstrate the model and its potential applications. 相似文献
14.
《Transportation Research Part A: General》1988,22(1):45-56
For the most part, previous studies of freeway flow kinematics and dynamics (especially relating to schock wave propagation and to the fundamental diagram) have looked only at flow within a single lane. However, the perturbations in flow which make the dynamics interesting—and of practical importance—normally arise in multiple lane settings. This study examines flow-occupancy dynamics at the onset of congestion by taking into consideration the flows across all the lanes, individually. The results show that just prior to the onset of congestion, flow rates in the shoulder lane are only about 50% of the flows in the median and middle lanes. As the congestion moves upstream through a data collection station, flow rates in the two fast lanes decrease, but flow rates in the shoulder lane invariably increase. After the onset of congested operations, all three tend toward the same average occupancy and speed. These results provide support for an earlier suggestion that discontinuous flow-concentration functions are not necessary, and also help to resolve some of the questions raised by that earlier suggestion. 相似文献
15.
In this research we developed a network model that will help the airport authorities assign flights to gates both efficiently and effectively. The model was formulated as a multi-commodity network flow problem. An algorithm based on the Lagrangian relaxation, with subgradient methods, accompanied by a shortest path algorithm and a Lagrangian heuristic was developed to solve the problem. The model was tested using data from Chiang Chiek-Shek Airport. 相似文献
16.
Xinkai WuHenry X. Liu 《Transportation Research Part B: Methodological》2011,45(10):1768-1786
In this paper a new traffic flow model for congested arterial networks, named shockwave profile model (SPM), is presented. Taking advantage of the fact that traffic states within a congested link can be simplified as free-flow, saturated, and jammed conditions, SPM simulates traffic dynamics by analytically deriving the trajectories of four major shockwaves: queuing, discharge, departure, and compression waves. Unlike conventional macroscopic models, in which space is often discretized into small cells for numerical solutions, SPM treats each homogeneous road segment with constant capacity as a section; and the queuing dynamics within each section are described by tracing the shockwave fronts. SPM is particularly suitable for simulating traffic flow on congested signalized arterials especially with queue spillover problems, where the steady-state periodic pattern of queue build-up and dissipation process may break down. Depending on when and where spillover occurs along a signalized arterial, a large number of queuing patterns may be possible. Therefore it becomes difficult to apply the conventional approach directly to track shockwave fronts. To overcome this difficulty, a novel approach is proposed as part of the SPM, in which queue spillover is treated as either extending a red phase or creating new smaller cycles, so that the analytical solutions for tracing the shockwave fronts can be easily applied. Since only the essential features of arterial traffic flow, i.e., queue build-up and dissipation, are considered, SPM significantly reduces the computational load and improves the numerical efficiency. We further validated SPM using real-world traffic signal data collected from a major arterial in the Twin Cities. The results clearly demonstrate the effectiveness and accuracy of the model. We expect that in the future this model can be applied in a number of real-time applications such as arterial performance prediction and signal optimization. 相似文献
17.
This paper is an attempt to develop a generic simulation‐based approach to assess transit service reliability, taking into account interaction between network performance and passengers' route choice behaviour. Three types of reliability, say, system wide travel time reliability, schedule reliability and direct boarding waiting‐time reliability are defined from perspectives of the community or transit administration, the operator and passengers. A Monte Carlo simulation approach with a stochastic user equilibrium transit assignment model embedded is proposed to quantify these three reliability measures of transit service. A simple transit network with a bus rapid transit (BRT) corridor is analysed as a case study where the impacts of BRT components on transit service reliability are evaluated preliminarily. 相似文献
18.
D.J. Buckley 《Transportation Research Part B: Methodological》1979,13(2):167-179
The work deals with the assignment of traffic to a two-dimensional continuous representation of a traffic network. An important aspect of the treatment is that the reciprocal of the speed on each road in the network is at all times a linear function of the flow on that road. This speed-flow relationship is generalized to two-dimensional space using travel intensities and taking account of road densities, so that there is direct dependence of speeds upon flows at all points regardless of their location. There is also dependence of flows upon speeds at all points because Wardrop's first assignment principle is adopted. That is, for a given O-D pair, journey times on all routes actually used are identical, and less than journey times on all other possible routes. This results in the identification for each O-D pair of an “assignment zone”, an area within which all trips between that O-D pair are made, and beyond which no such trips are made. For a single O-D pair the assignment zone is identified by ?m, the maximum angular divergence of a path from the straight line between O and D. Paths are then assumed to be bilinear so that for a single O-D pair the assignment zone is a parallelogram. Journey times, speeds, lateral displacement and other related quantities are obtained as functions of the flow Q between O and D. The work is extended to three O-D pairs located at the extremities of an equilateral triangle and four O-D pairs located at the corners of a square. At low flows these two configurations are trivial extensions of the single O-D pair problem because assignment zones do not overlap. At higher flows account is taken of this tendency to overlapping, so that although they do not overlap they do touch, becoming kite-shaped. Origins and destinations are assumed to be at the periphery of small circles of arbitrary radius. The work is inelegant to the extent that it involves a numerical integration but it is possible that this might eventually be circumvented. 相似文献
19.
Thomas J. Dickson 《Transportation Research Part B: Methodological》1981,15(4):267-271
This paper discusses the problems of using signal timings in a signal-controlled road network to influence equilibrium flows in such a way that some network performance index, e.g. total travel time, is optimised, given that at equilibrium each driver is using a minimum-time route. By means of a simple example, we show that an intuitively acceptable approach explored in other articles does not work and may, in fact, lead to a decline in network performance rather than an improvement. 相似文献
20.
Location-based systems can be very helpful to mobile users if they are able to suggest shortest paths to destination taking into account the actual traffic conditions. This would allow to inform the drivers not only about the current shortest paths to destination but also about alternative, timely computed paths to avoid being trapped in the traffic jams signaled by cyber-physical-social systems. To this aim, the paper proposes a set of algorithms that solve very fast the All Pair Shortest Paths problem in both the free flow and congested traffic regimes, for road networks of medium-large size, thus enabling location-based systems to deal with emergencies and critical traffic conditions in city and metropolitan areas, whose transport networks typically range from some hundreds to many thousands of nodes, respectively. The paths to avoid being trapped in the traffic jams are computed by using a simulation of the shockwave propagation, instead of historical data. A parallel version of the algorithms is also proposed to solve the All Pair Shortest Paths problem for metropolitan areas with very large road networks. A time performance analysis of the proposed algorithms for transport networks of various size is carried out. 相似文献