首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In many urban centers the demand for parking increases sharply before Christmas mainly due to shopping activity — causing parking congestion. One way to ameliorate such congestion is by disseminating parking information. Informed drivers may divert to relatively under-utilized parking facilities relieving the pressure on congested facilities. The City of Nottingham in England tested a real-time parking information system designed to alleviate congestion in the City Center parking facilities. Real-time information was disseminated through the radio, while historical information regarding parking locations was disseminated through newspaper advertisements and leaflets. The objective of this study is to assess impacts of the parking information system on travelers' knowledge and decisions.Survey research was used to understand traveler response. Respondents' levels of knowledge regarding car parks were analyzed by developing Poisson regression models. Drivers were more likely to have greater knowledge of city center car parks if they used several information sources (radio broadcasts, newspaper advertisements or leaflets and word-of-mouth), were active seekers of parking information, and searched for parking rather than going directly to a parking facility. In addition, the study of behavior showed that drivers were more inclined to use the relatively under-utilized Park-and-Ride facilities instead of the city center car parks if they received parking information from Newspaper advertisements/leaflets. Overall, the parking information service in Nottingham was effective; it seems reasonable to establish such information dissemination and monitoring systems at parking facilities in other urban areas. Furthermore, to support informed travel and activity participation decisions, parking information should be integrated with traffic and transit information.  相似文献   

2.
Urban truck parking policies include time restrictions, pricing policies, space management and enforcement. This paper develops a method for investigating the potential impact of truck parking policy in urban areas. An econometric parking choice model is developed that accounts for parking type and location. A traffic simulation module is developed that incorporates the parking choice model to select suitable parking facilities/locations. The models are demonstrated to evaluate the impact of dedicating on-street parking in a busy street system in the Toronto CBD. The results of the study show lower mean searching time for freight vehicles when some streets are reserved for freight parking, accompanied by higher search and walking times for passenger vehicles.  相似文献   

3.
In congested urban areas, it remains a pressing challenge to reduce unnecessary vehicle circling for parking while at the same time maximize parking space utilization. In observance of new information technologies that have become readily accessible to drivers and parking agencies, we develop a dynamic non-cooperative bi-level model (i.e. Stackelberg leader–follower game) to set parking prices in real-time for effective parking access and space utilization. The model is expected to fit into an integrated parking pricing and management system, where parking reservations and transactions are facilitated by sensing and informatics infrastructures, that ensures the availability of convenient spaces at equilibrium market prices. It is shown with numerical examples that the proposed dynamic parking pricing model has the potential to virtually eliminate vehicle circling for parking, which results in significant reduction in adverse socioeconomic externalities such as traffic congestion and emissions.  相似文献   

4.
This study is the first in the literature to model the joint equilibrium of departure time and parking location choices when commuters travel with autonomous vehicles (AVs). With AVs, walking from parking spaces to the work location is not needed. Instead, AVs will drop off the commuters at the workplace and then drive themselves to the parking spaces. In this context, the equilibrium departure/arrival profile is different from the literature with non-autonomous vehicles (non-AVs). Besides modeling the commuting equilibrium, this study further develops the first-best time-dependent congestion tolling scheme to achieve the system optimum. Also, a location-dependent parking pricing scheme is developed to replace the tolling scheme. Furthermore, this study discusses the optimal parking supply to minimize the total system cost (including both the travel cost and the social cost of parking supply) under either user equilibrium or system optimum traffic flow pattern. It is found that the optimal planning of parking can be different from the non-AV situation, since the vehicles can drive themselves to parking spaces that are further away from the city center and walking of commuters is avoided. This paper sheds light on future parking supply planning and traffic management.  相似文献   

5.
Cruising-for-parking constraints mobility in urban networks. Car-users may have to cruise for on-street parking before reaching their destinations. The accessibility and the cost of parking significantly influence people's travel behavior (such as mode choice, or parking facility choice between on-street and garage). The cruising flow causes delays eventually to everyone, even users with destinations outside limited parking areas. It is therefore important to understand the impact of parking limitation on mobility, and to identify efficient parking policies for travel cost reduction. Most existing studies on parking fall short in reproducing the dynamic spatiotemporal features of traffic congestion in general, lack the treatment of dynamics of the cruising-for-parking phenomenon, or require detailed input data that are typically costly and difficult to collect. In this paper, we propose an aggregated and dynamic approach for modeling multimodal traffic with the treatment on parking, and utilize the approach to design dynamic parking pricing strategies. The proposed approach is based on the Macroscopic Fundamental Diagram (MFD), which can capture congestion dynamics at network-level for single-mode and bi-modal (car and bus) systems. A parsimonious parking model is integrated into the MFD-based multimodal modeling framework, where the dynamics of vehicular and passenger flows are considered with a change in the aggregated behavior (e.g. mode choice and parking facility choice) caused by cruising and congestion. Pricing strategies are developed with the objective of reducing congestion, as well as lowering the total travel cost of all users. A case study is carried out for a bi-modal city network with a congested downtown region. An elegant feedback dynamic parking pricing strategy can effectively reduce travel delay of cruising and the generic congestion. Remarkably, such strategy, which is applicable in real-time management with limited available data, is fairly as efficient as a dynamic pricing scheme obtained from system optimum conditions and a global optimization with full information about the future states of the system. Stackelberg equilibrium is also investigated in a competitive behavior between different parking facility operators. Policy indications on on-street storage capacity management and pricing are provided.  相似文献   

6.
This paper investigates the role of parking pricing and supply by time of day in whether to drive and park in the central business district (CBD). A stated preference survey of car drivers and public transport users was undertaken at a number of parking locations, public transit interchanges, and shopping centres in Sydney CBD during 1998. In the context of a current trip to the CBD, respondents were asked to consider six alternatives, including three parking locations in the CBD, park outside of the CBD with public transport connection to the CBD, switch to public transport, or forego that trip to the CBD. The three parking locations were defined by hours of operation, a tariff schedule, and access time to the final destination from the parking station. Data from the survey were then used to estimate a nested logit model of mode and parking choices, which was then used to simulate the impacts of supply pricing scenarios on CBD parking share. The change in CBD parking share attributable to supply by time of day is less than 3%, compared to 97% attributable to parking prices.  相似文献   

7.
This study proposes a coordinated online in-vehicle routing mechanism for smart vehicles with real-time information exchange and portable computation capabilities. The proposed coordinated routing mechanism incorporates a discrete choice model to account for drivers’ behavior, and is implemented by a simultaneously-updating distributed algorithm. This study shows the existence of an equilibrium coordinated routing decision for the mixed-strategy routing game and the convergence of the distributed algorithm to the equilibrium routing decision, assuming individual smart vehicles are selfish players seeking to minimize their own travel time. Numerical experiments conducted based on Sioux Falls city network indicate that the proposed distributed algorithm converges quickly under different smart vehicle penetrations, thus it possesses a great potential for online applications. Moreover, the proposed coordinated routing mechanism outperforms traditional independent selfish-routing mechanism; it reduces travel time for both overall system and individual vehicles, which represents the core idea of Intelligent Transportation Systems (ITS).  相似文献   

8.
The urban parking and the urban traffic systems are essential components of the overall urban transportation structure. The short-term interactions between these two systems can be highly significant and influential to their individual performance. The urban parking system, for example, can affect the searching-for-parking traffic, influencing not only overall travel speeds in the network (traffic performance), but also total driven distance (environmental conditions). In turn, the traffic performance can also affect the time drivers spend searching for parking, and ultimately, parking usage. In this study, we propose a methodology to model macroscopically such interactions and evaluate their effects on urban congestion.The model is built on a matrix describing how, over time, vehicles in an urban area transition from one parking-related state to another. With this model it is possible to estimate, based on the traffic and parking demand as well as the parking supply, the amount of vehicles searching for parking, the amount of vehicles driving on the network but not searching for parking, and the amount of vehicles parked at any given time. More importantly, it is also possible to estimate the total (or average) time spent and distance driven within each of these states. Based on that, the model can be used to design and evaluate different parking policies, to improve (or optimize) the performance of both systems.A simple numerical example is provided to show possible applications of this type. Parking policies such as increasing parking supply or shortening the maximum parking duration allowed (i.e., time controls) are tested, and their effects on traffic are estimated. The preliminary results show that time control policies can alleviate the parking-caused traffic issues without the need for providing additional parking facilities. Results also show that parking policies that intend to reduce traffic delay may, at the same time, increase the driven distance and cause negative externalities. Hence, caution must be exercised and multiple traffic metrics should be evaluated before selecting these policies.Overall, this paper shows how the system dynamics of urban traffic, based on its parking-related-states, can be used to efficiently evaluate the urban traffic and parking systems macroscopically. The proposed model can be used to estimate both, how parking availability can affect traffic performance (e.g., average time searching for parking, number of cars searching for parking); and how different traffic conditions (e.g., travel speed, density in the system) can affect drivers ability to find parking. Moreover, the proposed model can be used to study multiple strategies or scenarios for traffic operations and control, transportation planning, land use planning, or parking management and operations.  相似文献   

9.
This paper investigates a parking reservation mechanism to reduce car cruising to find parking. To consider the benefits for drivers and parking facility providers, we charge drivers for making reservations in addition to parking fees, by introducing a reservation pricing model that makes reservation prices equivalent to the value of saved search time. By modeling the number of vacant spaces as a stochastic variable, and applying binomial pricing methods, parking reservation prices are obtained. Numerical examples based on the data for two parking facilities in Taiwan are given.  相似文献   

10.
Recently, management of parking rates has been proposed as an effective policy option to ameliorate the adverse impacts of excessive commuter automobile use in urban areas. Parking price strategies have the potential for significantly altering travel behavior in favor of high occupancy vehicles, as well as reducing congestion, energy consumption and pollution. Unfortunately, however, a paucity of empirical evidence exists regarding the impacts of parking pricing policies on travel patterns. The recent attempt aimed at eliminating federal employee parking subsidies provided a unique opportunity to take a careful look at the impacts of commuter parking price increases.In November 1979, federal employees at many government facilities in Washington, DC, and other major cities began to pay one-half of nearby commercial parking rates for government-controlled parking spaces. This paper presents the impacts of the parking price increases on commuting behavior at a sample of 15 worksites in metropolitan Washington, DC, and discusses their short term planning and policy implications. A before and after with control group survey design monitored the effects on modal shifts, automobile occupancy, and parking behavior. The results showed that removing free parking and raising parking rates (from $10 to $32 per month) influenced some significant shifts to higher-occupancy modes, but that the shifts were not uniform in direction or magnitude across the sites. In addition, the study examined how locational, travel, and employee factors influenced the modal shifts.  相似文献   

11.
Interest in vehicle automation has been growing in recent years, especially with the very visible Google car project. Although full automation is not yet a reality there has been significant research on the impacts of self-driving vehicles on traffic flows, mainly on interurban roads. However, little attention has been given to what could happen to urban mobility when all vehicles are automated. In this paper we propose a new method to study how replacing privately owned conventional vehicles with automated ones affects traffic delays and parking demand in a city. The model solves what we designate as the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP), which dynamically assigns family trips in their automated vehicles in an urban road network from a user equilibrium perspective where, in equilibrium, households with similar trips should have similar transport costs. Automation allows a vehicle to travel without passengers to satisfy multiple household trips and, if needed, to park itself in any of the network nodes to benefit from lower parking charges. Nonetheless, the empty trips can also represent added congestion in the network. The model was applied to a case study based on the city of Delft, the Netherlands. Several experiments were done, comparing scenarios where parking policies and value of travel time (VTT) are changed. The model shows good equilibrium convergence with a small difference between the general costs of traveling for similar families. We were able to conclude that vehicle automation reduces generalized transport costs, satisfies more trips by car and is associated with increased traffic congestion because empty vehicles have to be relocated. It is possible for a city to charge for all street parking and create free central parking lots that will keep total transport costs the same, or reduce them. However, this will add to congestion as traffic competes to access those central nodes. In a scenario where a lower VTT is experienced by the travelers, because of the added comfort of vehicle automation, the car mode share increases. Nevertheless this may help to reduce traffic congestion because some vehicles will reroute to satisfy trips which previously were not cost efficient to be done by car. Placing the free parking in the outskirts is less attractive due to the extra kilometers but with a lower VTT the same private vehicle demand would be attended with the advantage of freeing space in the city center.  相似文献   

12.
Major commuting corridors in metropolitan areas generally comprise multiple transportation modes for commuters, such as transit (subways or buses), private vehicles, or park-and-ride combinations. During the morning peak hour, the commuters would choose one of the available transportation modes to travel through the corridors from rural/suburban living areas to urban working areas. This paper introduces a concept of transportation serviceability to evaluate a transportation mode’s service status in a specific link, route, road, or network during a certain period. The serviceability can be measured by the possibility that travelers choose a specific type of transportation service at a certain travel cost. The commuters’ modal-choice possibilities are calculated using a stochastic equilibrium model based on general travel cost. The modeling results illustrate how transportation serviceability is influenced by background traffic flow in a corridor, value of comfort for railway mode, and parking fee distribution.  相似文献   

13.
Motivated by the growth of ridesourcing services and the expected advent of fully-autonomous vehicles (AVs), this paper defines, models, and compares assignment strategies for a shared-use AV mobility service (SAMS). Specifically, the paper presents the on-demand SAMS with no shared rides, defined as a fleet of AVs, controlled by a central operator, that provides direct origin-to-destination service to travelers who request rides via a mobile application and expect to be picked up within a few minutes. The underlying operational problem associated with the on-demand SAMS with no shared rides is a sequential (i.e. dynamic or time-dependent) stochastic control problem. The AV fleet operator must assign AVs to open traveler requests in real-time as traveler requests enter the system dynamically and stochastically. As there is likely no optimal policy for this sequential stochastic control problem, this paper presents and compares six AV-traveler assignment strategies (i.e. control policies). An agent-based simulation tool is employed to model the dynamic system of AVs, travelers, and the intelligent SAMS fleet operator, as well as, to compare assignment strategies across various scenarios. The results show that optimization-based AV-traveler assignment strategies, strategies that allow en-route pickup AVs to be diverted to new traveler requests, and strategies that incorporate en-route drop-off AVs in the assignment problem, reduce fleet miles and decrease traveler wait times. The more-sophisticated AV-traveler assignment strategies significantly improve operational efficiency when fleet utilization is high (e.g. during the morning or evening peak); conversely, when fleet utilization is low, simply assigning traveler requests sequentially to the nearest idle AV is comparable to more-advanced strategies. Simulation results also indicate that the spatial distribution of traveler requests significantly impacts the empty fleet miles generated by the on-demand SAMS.  相似文献   

14.
We assess existing and potential charging infrastructure for plug-in vehicles in US households using data from the American Housing Survey and the Residential Energy Consumption Survey. We estimate that less than half of US vehicles have reliable access to a dedicated off-street parking space at an owned residence where charging infrastructure could be installed. Specifically, while approximately 79% households have off-street parking for at least some of their vehicles, only an estimated 56% of vehicles have a dedicated off-street parking space – and only 47% at an owned residence. Approximately 22% vehicles currently have access to a dedicated home parking space within reach of an outlet sufficient to recharge a small plug-in vehicle battery pack overnight. Access to faster charging, required for vehicles with longer electric range, will usually require infrastructure investment ranging from several hundred to several thousand dollars, depending on panel and construction requirements. We discuss sensitivity of results to uncertain factors and implications for the potential of mainstream penetration of plug-in vehicles.  相似文献   

15.
To be effective, safety relevant applications based on wireless communications between vehicles need a minimum rate of vehicles equipped with communication devices. Although this minimum rate of vehicles could be relatively low, it is still difficult to obtain starting from a nonequipped vehicles situation. However, Long and short range radars are becoming very popular these days for cruise control, obstacle detection, parking assistance and pre-crash sensing. These radars are active sensors that produce significant radiofrequency power in wide allocated frequency bands. They also integrate a sensitive receiver. To accelerate the vehicle-to-vehicle communications penetration rate, this paper evaluates the possibility of enhancing vehicle-to-vehicle communications by using communicating-radars working at millimeter-wave. Current allocated frequencies for both vehicle-to-vehicle communication and radars are presented. Short-range and long-range radar radiofrequency parameters are analyzed to verify that existing automotive radar radio standards are consistent with communication. At grazing angles above the road, the characteristics of the communicating-radar propagation channel are theoretically and experimentally studied and compared to a more conventional 5.9 GHz channel. An analysis of Ultra Wide Band radio communication providing simultaneous access to vehicles in the same communication area is presented. Lastly, relevant architectures for communicating-radars are discussed.  相似文献   

16.
In this paper, we define the online localized resource allocation problem, especially relevant for modeling transportation applications. The problem modeling takes into account simultaneously the geographical location of consumers and resources together with their online nondeterministic appearance. We use urban parking management as an illustration of this problem. In fact, urban parking management is an online localized resource allocation problem, where the question is how to find an efficient allocation of parking spots to drivers, while they all have dynamic geographical positions and appear nondeterministically. We define this problem and propose a multiagent system to solve it. The objective of the system is to decrease, for private vehicles drivers, the parking spots search time. The drivers are organized in communities and share information about spots availability. We have defined two cooperative models and compared them: a fully cooperative model, where agents share all the available information, and a “coopetitive” model, where drivers do not share information about the spot that they have chosen. Results show the superiority of the first model.  相似文献   

17.
The diffusion of electric vehicles (EVs) is studied in a two-sided market framework consisting of EVs on the one side and EV charging stations (EVCSs) on the other. A sequential game is introduced as a model for the interactions between an EVCS investor and EV consumers. A consumer chooses to purchase an EV or a conventional gasoline alternative based on the upfront costs of purchase, the future operating costs, and the availability of charging stations. The investor, on the other hand, maximizes his profit by deciding whether to build charging facilities at a set of potential EVCS sites or to defer his investments.The solution of the sequential game characterizes the EV-EVCS market equilibrium. The market solution is compared with that of a social planner who invests in EVCSs with the goal of maximizing the social welfare. It is shown that the market solution underinvests EVCSs, leading to slower EV diffusion. The effects of subsidies for EV purchase and EVCSs are also considered.  相似文献   

18.
This study evaluates individual preferences for five different cycling environments by trading off a better facility with a higher travel time against a less attractive facility at a lower travel time. The tradeoff of travel time to amenities of a particular facility informs our understanding of the value attached to different attributes such as bike-lanes, off-road trails, or side-street parking. The facilities considered here are off-road facilities, in-traffic facilities with bike-lane and no on-street parking, in-traffic facilities with a bike-lane and on-street parking, in-traffic facilities with no bike-lane and no on-street parking and in-traffic facilities with no bike-lane but with parking on the side. We find that respondents are willing to travel up to twenty minutes more to switch from an unmarked on-road facility with side parking to an off-road bicycle trail, with smaller changes associated with less dramatic improvements.  相似文献   

19.
In this paper, we consider connected cruise control design in mixed traffic flow where most vehicles are human-driven. We first propose a sweeping least square method to estimate in real time feedback gains and driver reaction time of human-driven vehicles around the connected automated vehicle. Then we propose an optimal connected cruise controller based on the mean dynamics of human driving behavior. We test the performance of both the estimation algorithm and the connected cruise control algorithm using experimental data. We demonstrate that by combining the proposed estimation algorithm and the optimal controller, the connected automated vehicle has significantly improved performance compared to a human-driven vehicle.  相似文献   

20.
Parking problem becomes one of major issues in the city transportation management since the spatial resource of a city is limited and the parking cost is expensive. Lots of cars on the road should spend unnecessary time and consume energy during searching for parking due to limited parking space. To cope with these limitations and give more intelligent solutions to drivers in the selection of parking facility, this study proposes a smart parking guidance algorithm. The proposed algorithm supports drivers to find the most appropriate parking facility considering real-time status of parking facilities in a city. To suggest the most suitable parking facility, several factors such as driving distance to the guided parking facility, walking distance from the guided parking facility to destination, expected parking cost, and traffic congestion due to parking guidance, are considered in the proposed algorithm. To evaluate the effectiveness of the proposed algorithm, simulation tests have been carried out. The proposed algorithm helps to maximize the utilization of space resources of a city, and reduce unnecessary energy consumption and CO2 emission of wandering cars since it is designed to control the utilization of parking facility efficiently and reduce traffic congestion due to parking space search.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号