首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two continuum approximation (CA) optimization models are formulated to design city-wide transit systems at minimum cost. Transit routes are assumed to lie atop a city’s street network. Model 1 assumes that the city streets are laid out in ring-radial fashion. Model 2 assumes that the city streets form a grid. Both models can furnish hybrid designs, which exhibit intersecting routes in a city’s central (downtown) district and only radial branching routes in the periphery. Model 1 allows the service frequency and the route spacing at a location to vary arbitrarily with the location’s distance from the center. Model 2 also allows such variation but in the periphery only.The paper shows how to solve these CA optimization problems numerically, and how the numerical results can be used to design actual systems. A wide range of scenarios is analyzed in this way. It is found among other things that in all cases and for both models: (i) the optimal headways and spacings in the periphery increase with the distance from the center; and (ii) at the boundary between the central district and the periphery both, the optimal service frequency and line spacing for radial lines decrease abruptly in the outbound direction. On the other hand Model 1 is distinguished from Model 2 in that the former produces in all cases: (i) a much smaller central district, and (ii) a high frequency circular line on the outer edge of that central district.Parametric tests with all the scenarios further show that Model 1 is consistently more favorable to transit than Model 2. Cost differences between the two designs are typically between 9% and 13%, but can top 21.5%. This is attributed to the manner in which ring-radial networks naturally concentrate passenger’s shortest paths, and to the economies of demand concentration that transit exhibits. Thus, it appears that ring-radial street networks are better for transit than grids.To illustrate the robustness of the CA design procedure to irregularities in real street networks, the results for all the test problems were then used to design and evaluate transit systems on networks of the “wrong” type – grid networks were outfilled with transit systems designed with Model 1 and ring-radial networks designed with Model 2. Cost increased on average by only 2.7%. The magnitude of these deviations suggests that the proposed CA procedures can be used to design transit systems over real street networks when they are not too different from the ideal and that the resulting costs should usually be very close to those predicted.  相似文献   

2.
An optimization model for station locations for an on-ground rail transit line is developed using different objective functions of demand and cost as both influence the planning of a rail transit alignment. A microscopic analysis is performed to develop a rail transit alignment in a given corridor considering a many-to-one travel demand pattern. A variable demand case is considered as it replicates a realistic scenario for planning a rail transit line. A Genetic Algorithm (GA) based on a Geographical Information System (GIS) database is developed to optimize the station locations for a rail transit alignment. The first objective is to minimize the total system cost per person, which is a function of user cost, operator cost, and location cost. The second objective is to maximize the ridership or the service coverage of the rail transit alignment. The user cost per person is minimized separately as the third objective because the user cost is one of the most important decision-making factors for planning a transit system from the users’ perspective. A transit planner can make an informed decision between various alternatives based on the results obtained using different objective functions. The model is applied in a case study in the Washington, DC area. The optimal locations and sequence of stations obtained using the three objective functions are presented and a comparative study between the results obtained is shown in the paper. In future works we will develop a combinatorial optimization problem using the aforementioned objectives for the rail transit alignment planning and design problem.  相似文献   

3.
A model is developed for jointly optimizing the characteristics of a rail transit route and its associated feeder bus routes in an urban corridor. The corridor demand characteristics are specified with irregular discrete distributions which can realistically represent geographic variations. The total cost (supplier plus user cost) of the integrated bus and rail network is minimized with an efficient iterative method that successively substitutes variable values obtained through classical analytic optimization. The optimized variables include rail line length, rail station spacings, bus headways, bus stop spacings, and bus route spacing. Computer programs are designed for optimization and sensitivity analysis. The sensitivity of the transit service characteristics to various travel time and cost parameters is discussed. Numerical examples are presented for integrated transit systems in which the rail and bus schedules may be coordinated.  相似文献   

4.
文章分析了轨道交通客流需求量的影响因素,以拥挤条件下的出行阻抗函数为基础,通过引入弹性需求条件下的轨道交通均衡配流条件,构建了弹性需求的均衡配流模型。根据模型的特点,给出了改进的用于求解弹性需求下的轨道交通均衡配流模型的Frank-wolfe算法。最后通过一个算例说明了算法的有效性和合理性。  相似文献   

5.
An analytical model that determines the optimal location and length of rail line along a crosstown transportation corridor with the objective of minimizing the total transportation cost is presented. A general, many-to-many passenger demand pattern is considered. The objective function, which includes the rail and bus riding costs, rail and bus operating costs, rail fleet costs and rail line costs, is minimized by using the classical optimization method with the aid of a computer program developed for the model. The model is applied to the Northwest-South transportation corridor in Calgary, Alberta, and the sensitivity of the optimal rail line location and length to the unit cost and demand parameters at their reasonable ranges is tested. It is found that although the total passenger demand, unit rail line cost, and unit bus operating cost have greater influence than the unit bus and rail riding costs, and unit rail fleet and operating costs, the optimal line length is generally insensitive to all these parameters. It is also found that the length of the existing LRT line in the corridor is comparable to the optimal line length obtained from the model, but the existing line should be extended further south in order to meet the heavier demand in that direction optimally.  相似文献   

6.
This paper proposes a new activity-based transit assignment model for investigating the scheduling (or timetabling) problem of transit services in multi-modal transit networks. The proposed model can be used to generate the short-term and long-term timetables of multimodal transit lines for transit operations and service planning purposes. The interaction between transit timetables and passenger activity-travel scheduling behaviors is captured by the proposed model, as the activity and travel choices of transit passengers are considered explicitly in terms of departure time choice, activity/trip chain choices, activity duration choice, transit line and mode choices. A heuristic solution algorithm which combines the Hooke–Jeeves method and an iterative supply–demand equilibrium approach is developed to solve the proposed model. Two numerical examples are presented to illustrate the differences between the activity-based approach and the traditional trip-based method, together with comparison on the effects of optimal timetables with even and uneven headways. It is shown that the passenger travel scheduling pattern derived from the activity-based approach is significantly different from that obtained by the trip-based method, and that a demand-sensitive (with uneven headway) timetable is more efficient than an even-headway timetable.  相似文献   

7.
This paper develops a reliability-based formulation for rapid transit network design under demand uncertainty. We use the notion of service reliability to confine the stochastic demand into a bounded uncertainty set that the rapid transit network is designed to cover. To evaluate the outcome of the service reliability chosen, flexible services are introduced to carry the demand overflow that exceeds the capacity of the rapid transit network such designed. A two-phase stochastic program is formulated, in which the transit line alignments and frequencies are determined in phase 1 for a specified level of service reliability; whereas in phase 2, flexible services are determined depending on the demand realization to capture the cost of demand overflow. Then the service reliability is optimized to minimize the combined rapid transit network cost obtained in phase 1, and the flexible services cost and passenger cost obtained in phase 2. The transit line alignments and passenger flows are studied under the principles of system optimal (SO) and user equilibrium (UE). We then develop a two-phase solution algorithm that combines the gradient method and neighborhood search and apply it to a series of networks. The results demonstrate the advantages of utilizing the two-phase formulation to determine the service reliability as compared with the traditional robust formulation that pre-specifies a robustness level.  相似文献   

8.
Passenger transportation in most large cities relies on an efficient mass transit system, whose line configuration has direct impacts on the system operating cost, passenger travel time and line transfers. Unfortunately, the interplay between transit line configuration and passenger line assignment has been largely ignored in the literature. This paper presents a model for simultaneous optimization of transit line configuration and passenger line assignment in a general network. The model is formulated as a linear binary integer program and can be solved by the standard branch and bound method. The model is illustrated with a couple of minimum spanning tree networks and a simplified version of the general Hong Kong mass transit railway network.  相似文献   

9.
Seating or standing make distinct on‐board states to a transit rider, yielding distinct discomfort costs, with potential influence on the passenger route choice onto the transit network. The paper provides a transit assignment model that captures the seating capacity and its occupancy along any transit route. The main assumptions pertain to: the seat capacity by service route, selfish user behaviour, a seat allocation process with priority rules among the riders, according to their prior state either on‐board or at boarding. To each transit leg from access to egress station is associated a set of ‘service modes’, among which the riders are assigned in a probabilistic way, conditionally on their priority status and the ratio between the available capacity and the flow of them. Thus the leg cost is a random variable, with mean value to be included in the trip disutility. Computationally efficient algorithms are provided for, respectively, loading the leg flows and evaluating the leg costs along a transit line. At the network level, a hyperpath formulation is provided for supply‐demand equilibrium, together with a property of existence and an method of successive averages equilibration algorithm. It is shown that multiple equilibria may arise. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Transit oriented development (TOD) has been an important topic for urban transportation planning research and practice. This paper is aimed at empirically examining the effect of rail transit station-based TOD on daily station passenger volume. Using integrated circuit (IC) card data on metro passenger volumes and cellular signaling data on the spatial distribution of human activities in Shanghai, the research identifies variations in ridership among rail transit stations. Then, regression analysis is performed using passenger volume in each station as the dependent variable. Explanatory variables include station area employment and population, residents’ commuting distances, metro network accessibility, status as interchange station, and coupling with commercial activity centers. The main findings are: (1) Passenger volume is positively associated with employment density and residents’ commuting distance around station; (2) stations with earlier opening dates and serving as transfer nodes tend to have positive association with passenger volumes; (3) metro stations better integrated with nearby commercial development tend to have larger passenger volumes. Several implications are drawn for TOD planning: (1) TOD planning should be integrated with rail transit network planning; (2) location of metro stations should be coupled with commercial development; (3) high employment densities should be especially encouraged as a key TOD feature; and (4) interchange stations should be more strategically positioned in the planning for rail transit network.  相似文献   

11.
Mathematical models are developed for optimizing radial bus networks with time dependent demand and supply characteristics. These models can deal with many-to-many demand distribution in heterogeneous rather than idealized geographic environments. With some approximations, closed-form solutions for the optimal route angle, headways for different time periods, and stop spacings for various locations are obtained for a total cost minimization objective. The relations between the decision variables and system parameters are identified analytically. The optimality of a constant ratio between headways and route angle is found to hold with a time related factor. The optimized wait cost, operator cost, and lateral access cost are found to be equal. A numerical example is given for a case with three service periods. It illustrates the applicability of the analytic model to irregular demand patterns that may be directionally imbalanced during some periods.  相似文献   

12.
This paper proposes an analytical model for investigating transit technology selection problem from a perspective of transit authority. Given a transit technology alternative (e.g., metro, light rail transit, or bus rapid transit), the proposed model aims to maximize the social welfare of the transit system by determining the optimal combination of transit line length, number of stations, station location (or spacing), headway, and fare. In the proposed model, the effects of passenger demand elasticity and capacity constraint are explicitly considered. The properties of the model are examined analytically, and a heuristic solution procedure for determining the model solution is presented. By comparing the optimized social welfare for different transit technology alternatives, the optimal transit technology solution can be obtained together with critical population density. On the basis of a simple population growth rate formula, optimal investment timing of a new transit technology can be estimated. The proposed methodology is illustrated in several Chinese cities. Insightful findings are reported on the interrelation among transit technology selection, population density, transit investment cost, and transit line parameter design as well as the comparison between social welfare maximization and profit maximization regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

In large metropolitan areas, public transit is a major mode choice of commuters for their daily travel, which has an important role in relieving congestion on transportation corridors. The purpose of this study is to develop a model which optimizes service patterns (SPs) and frequencies that yield minimum cost transit operation. Considering a general transit route with given stops and origin-destination demand, the proposed model consists of an objective total cost function and a set of constraints to ensure frequency conservation and sufficient capacity subject to operable fleet size. A numerical example is provided to demonstrate the effectiveness of the developed model, in which the demand and facility data of a rail transit route were given. Results show that the proposed model can be applied to optimize integrated SPs and headways that significantly reduce the total cost, while the resulting performance indicators are generated.  相似文献   

14.
为准确把握轨道交通网络化运营的新态势和新要求,力求轨道交通系统在大客流下做到运输能力和服务水平的供需匹配,需对轨道交通网络的关键瓶颈进行有效识别和疏解。本文借鉴交通渗流理论,提出了限制网络整体服务水平和连通效能的动态服务瓶颈的识别方法,该方法综合考虑了城市轨道交通系统的网络特性、客流特性和服务特性。其中针对区间服务水平状态,该方法提出了定量评定的复合指标模型。以成都地铁线网为案例,基于实际客流运营数据,构建动态网络,识别服务瓶颈,验证了方法的适用性和准确性,对城市轨道交通系统运营管理有实际指导意义。  相似文献   

15.
This paper explores how the selection of public transit modes can be optimized over a planning horizon. This conceptual analysis sacrifices geographic detail in order to better highlight the relations among important factors. First, a set of static models is proposed to identify which type of service, e.g., bus only, rail only, or bus and rail, is the most cost-effective in terms of the average trip cost for given demand. After analyzing essential factors in a long-term planning process, e.g., economies of scale in rail extension and future cost discounting, a dynamic model incorporating such considerations is formulated to optimize the decision over a planning horizon. While analytical solutions can be obtained for some decision variables, the final model is solved with a graphical method by exploring the tradeoffs between the initial and recurring costs. Major findings from this study include: (a) there exists a minimum economic length for a rail line, which can be determined numerically; (b) economies of scale favor large extensions and excess supplied capacity; (c) the rail-only service is largely dominated by the feeder-trunk service, even in the long run.  相似文献   

16.
轨道交通线路功能定位对确定线路的技术标准、运营模式、系统制式等具有决定作用.房山线作为北京近期建设的轨道交通,其功能定位存在较多不确定因素,是北京线网规划阶段一个尚未完全解决的问题,也是项目可行性研究的难点之一。通过研究各层面关键因素对房山线功能的影响,对其定位进行分析,从而为该线的设计提供参考.  相似文献   

17.
This paper addresses the impacts of different scheduling alternatives for a branching transit route. It examines different schedule alternatives that might be used to optimize the route performance in terms of the passenger traveling time distributed among branch passengers and trunk‐line passengers. The schedule alternatives considered include transit vehicle allocation to different branches, offset shifting across vehicles on different branches, and vehicle holding (slack time) in the transit vehicle schedule. With these variables, several vehicle schedules are devised and examined based on a wide variety of possible passenger boarding scenarios using deterministic service models. Test outcomes provide general conclusions about the performance of the strategies. Vehicle assignment leading to even headways among branches is generally preferred for the case of low passenger demand. However, when passenger demand is high, or the differences between the passenger demands on branches are significant, unequal vehicle assignment will be helpful to improve the overall route performance. Holding, as a proactive strategy in scheduling, has the potential to be embedded into the schedule as a type of slack time, but needs further evidence and study to determine the full set of conditions where it may be beneficial. Offset shifting does not show sufficient evidence to be an efficient strategy to improve route performance in the case of low or high passenger demand.  相似文献   

18.
山地景区地势复杂,其发展普遍受交通所限,为了提高山地景区的运营效益、带动经济发展,国内部分景区规划和修建了山地旅游轨道交通。本文列举了山地旅游轨道交通特征及线路规划模式,从地理环境、自然环境、供需环境及与常规公交的关系四个角度分析,对应建立四个子系统,并选取具有山地旅游轨道交通特性的评价指标体系,利用层次分析法和变异系数法组合赋权重,运用灰色关联分析法的评价模型,据此判断线路规划方案适应性的优劣。  相似文献   

19.
In spite of a broad consensus among transportation analysts that bus rapid transit, whether operating on exclusive rights-of-way or on uncongested high occupancy vehicle lanes or general purpose limited access facilities, provides higher performance and has significantly lower costs per passenger trip than rail transit in medium and low density cities, nearly all Sunbelt cities are building or planning heavy or light rail systems. This paper reviews previous studies of the cost-effectiveness of heavy and light rail transit with bus-rapid transit and the growing experience with busways and transitways and concludes, once again, that some form of bus rapid transit would be a far more effective way of providing improved transit in these cities than heavy or light rail transit. Not only would bus rapid transit be substantially cheaper, but it would provide a higher quality of service than light or heavy rail transit for virtually all users. Finally, the paper speculates on the reasons for the continued, “blind” commitment to rail transit by policymakers in Sunbelt cities and on the refusal of policymakers in all but a few of these cities to even consider bus rapid transit.  相似文献   

20.
Planning a set of train lines in a large-scale high speed rail (HSR) network is typically influenced by issues of longer travel distance, high transport demand, track capacity constraints, and a non-periodic timetable. In this paper, we describe an integrated hierarchical approach to determine line plans by defining the stations and trains according to two classes. Based on a bi-level programming model, heuristics are developed for two consecutive stages corresponding to each classification. The approach determines day-period based train line frequencies as well as a combination of various stopping patterns for a mix of fast trunk line services between major stations and a variety of slower body lines that offer service to intermediate stations, so as to satisfy the predicted passenger transport demand. Efficiencies of the line plans described herein concern passenger travel times, train capacity occupancy, and the number of transfers. Moreover, our heuristics allow for combining many additional conflicting demand–supply factors to design a line plan with predominantly cost-oriented and/or customer-oriented objectives. A range of scenarios are developed to generate three line plans for a real-world example of the HSR network in China using a decision support system. The performance of potential train schedules is evaluated to further examine the feasibility of the obtained line plans through graphical timetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号