首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Sharma  Bibhuti  Hickman  Mark  Nassir  Neema 《Transportation》2019,46(1):217-232

This research aims to understand the park-and-ride (PNR) lot choice behaviour of users i.e., why PNR user choose one PNR lot versus another. Multinomial logit models are developed, the first based on the random utility maximization (RUM) concept where users are assumed to choose alternatives that have maximum utility, and the second based on the random regret minimization (RRM) concept where users are assumed to make decisions such that they minimize the regret in comparison to other foregone alternatives. A PNR trip is completed in two networks, the auto network and the transit network. The travel time of users for both the auto network and the transit network are used to create variables in the model. For the auto network, travel time is obtained using information from the strategic transport network using EMME/4 software, whereas travel time for the transit network is calculated using Google’s general transit feed specification data using a backward time-dependent shortest path algorithm. The involvement of two different networks in a PNR trip causes a trade-off relation within the PNR lot choice mechanism, and it is anticipated that an RRM model that captures this compromise effect may outperform typical RUM models. We use two forms of RRM models; the classical RRM and µRRM. Our results not only confirm a decade-old understanding that the RRM model may be an alternative concept to model transport choices, but also strengthen this understanding by exploring differences between two models in terms of model fit and out-of-sample predictive abilities. Further, our work is one of the few that estimates an RRM model on revealed preference data.

  相似文献   

2.
Interest in alternative behavioural paradigms to random utility maximization (RUM) has existed ever since the dominance of the RUM formulation. One alternative is known as random regret minimization (RRM), which suggests that when choosing between alternatives, decision makers aim to minimize anticipated regret. Although the idea of regret is not new, its incorporation into the same discrete choice framework of RUM is very recent. This paper is the first to apply the RRM‐model framework to model choice amongst durable goods. Specifically, we estimate and compare the RRM and RUM models in a stated choice context of choosing amongst vehicles fuelled with petrol, diesel and hybrid (associated with specific levels of fuel efficiency and engine capacity). The RRM model is found to achieve a marginally better fit (using a non‐nested test of differences) than its equally parsimonious RUM counterpart. As a second contribution, we derive a formulation for regret‐based elasticities and compare utility‐based and regret‐based elasticities in the context of stated vehicle type choices. We find that in the context of our choice data, mean estimates of elasticities are different for many of the attributes and alternatives. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This study proposes a generalized multinomial logit model that allows heteroscedastic variance and flexible utility function shape. The novelty of our approach is that the model is theoretically derived by applying a generalized extreme-value distribution to the random component of utility, while retaining its closed-form expression. In addition, the weibit model, in which the random utility is assumed to follow the Weibull distribution, is a special case of the proposed model. This is achieved by utilizing the q-generalization method developed in Tsallis statistics. Then, our generalized logit model is incorporated into a transportation network equilibrium model. The network equilibrium model with a generalized logit route choice is formulated as an optimization problem for uncongested networks. The objective function includes Tsallis entropy, a type of generalized entropy. The generalization of the Gumbel and Weibull distributions, logit and weibit models, and network equilibrium model are formulated within a unified framework with q-generalization or Tsallis statistics.  相似文献   

4.
Random utility models are undoubtedly the most used models for the simulation of transport demand. These models simulate the choice of a decision-maker among a set of feasible alternatives and their operational use requires that the analyst is able to correctly specify this choice-set for each individual.Some early applications basically ignored this problem by assuming that all decision-makers chose from the same pre-specified choice-set. This assumption may be unrealistic in many practical cases and cause significant misspecification problems (P. Stopher, Transportation Journal of ASCE 106 (1980) 427; H. Williams, J. Ortuzar, Transportation Research B 16 (1982) 167).The problem of choice-set simulation has been dealt within the literature following two basically different approaches:
  • •simulating the perception/availability of an alternative implicitly in the choice model,
  • •simulating the choice-set generation explicitly in a separate model.
The implicit approach is more convenient from an operational point of view, while the explicit one is more appealing from a theoretical point of view.In this paper, a different approach to the modeling of availability/perception of alternatives in the context of random utility model is proposed. This approach is based on the concept of intermediate degrees of availability/perception of each alternative simulated through a model (or “inclusion function”) which in turn is introduced in the systematic utility of standard random utility models.This model, named implicit availability/perception (IAP), may be differently specified depending on assumptions made on the joint distribution of random residuals and the way in which the average degree of availability/perception is modeled.In this paper, a possible specification of the IAP model, based on the assumption of random residual distributed as i.i. Gumbel and with the average degree of availability/perception modeled as a binomial logit, is proposed.The paper also proposes ML estimation models in two cases: in the first, only information on alternatives choices is available, while in the second, this information is complemented with others on variables related to a latent (i.e., non-observable) alternatives availability/perception degree (e.g., information on car availability of decision-maker i used as an indirect measurement of the unknown and non-observable availability/perception degree of alternative car for decision-maker i in a modal split).The proposed specification is tested on mode choice data; the calibration results are compared with those of a similar logit specification with encouraging results in terms of goodness of fit.  相似文献   

5.
The multinomial probit model of travel demand is considerably more general but much less tractable than the better-known multinomial logit model. In an effort to determine the effects of using the relatively simple logit model in situations where the assumptions of probit modeling are satisfied but those of logit modeling are not, the accuracy of the multinomial logit model as an approximation to a variety of three-alternative probit models has been evaluated. Multinomial logit can give highly erroneous estimates of the choice probabilities of multinomial probit models. However, logit models appear to give asymptotically accurate estimates of the ratios of the coefficients of the systematic components of probit utility functions, even when the logit choice probabilities differ greatly from the probit ones. Large estimation data sets are not necessarily needed to enable likelihood ratio tests to distinguish three-alternative probit models from logit models that give seriously erroneous estimates of the probit choice probabilities. Inclusion of alternative-specific dummy variables in logit utility functions cannot be relied upon to reduce significantly the errors of logit approximations to the choice probabilities of probit models whose utility functions do not contain the dummies.  相似文献   

6.
The multinomial probit model of travel demand is considerably more general but much less tractable than the better-known multinomial logit model. In an effort to determine the effects of using the relatively simple logit model in situations where the assumptions of probit modeling are satisfied but those of logit modeling are not, the accuracy of the multinomial logit model as an approximation to a variety of three-alternative probit models has been evaluated. Multinomial logit can give highly erroneous estimates of the choice probabilities of multinomial probit models. However, logit models appear to give asymptotically accurate estimates of the ratios of the coefficients of the systematic components of probit utility functions, even when the logit choice probabilities differ greatly from the probit ones. Large estimation data sets are not necessarily needed to enable likelihood ratio tests to distinguish three-alternative probit models from logit models that give seriously erroneous estimates of the probit choice probabilities. Inclusion of alternative-specific dummy variables in logit utility functions cannot be relied upon to reduce significantly the errors of logit approximations to the choice probabilities of probit models whose utility functions do not contain the dummies.  相似文献   

7.
To assess parking pricing policies and parking information and reservation systems, it is essential to understand how drivers choose their parking location. A key aspect is how drivers’ behave towards uncertainties towards associated search times and finding a vacant parking spot. This study presents the results from a stated preference experiment on the choice behaviour of drivers, in light of these uncertainties. The attribute set was selected based on a literature review, and appended with the probabilities of finding a vacant parking spot upon arrival and after 8 min (and initially also after 4 min, but later dropped to reduce the survey complexity). Efficient Designs were used to create the survey design, where two rounds of pilot studies were conducted to estimate prior coefficients. Data was successfully collected from 397 respondents. Various random utility maximisation (RUM) choice models were estimated, including multinomial logit, nested logit, and mixed logit, as well as models accounting for panel effects. These model analyses show how drivers appear to accept spending time on searching for a vacant parking spot, where parking availability after 8 min ranks second most important factor in determining drivers’ parking decisions, whilst parking availability upon arrival ranks fourth. Furthermore, the inclusion of heterogeneity in preferences and inter-driver differences is found to increase the predictive power of the parking location choice model. The study concludes with an outlook of how these insights into drivers’ parking behaviour can be incorporated into traffic assignment models and used to support parking systems.  相似文献   

8.
Welfare in random utility models is used to be analysed on the basis of only the expectation of the compensating variation. De Palma and Kilani (De Palma, A., Kilani, K., 2011. Transition choice probabilities and welfare analysis in additive random utility models. Economic Theory 46(3), 427–454) have developed a framework for conditional welfare analysis which provides analytic expressions of transition choice probabilities and associated welfare measures. The contribution is of practical relevance in transportation because it allows to compute shares of shifters and non-shifters and attribute benefits to them in a rigorous way. In De Palma and Kilani (2011) the usual assumption of unchanged random terms before and after is made.The paper generalises the framework for conditional welfare analysis to cases of imperfect before–after association of the random terms. The joint before–after distribution of the random terms is introduced with postulated properties in terms of marginal distributions and covariance matrix. Analytic expressions, based on the probability density function and the cumulative distribution function of the joint before–after distribution, and simulation procedures for computation of the transition choice probabilities and the conditional expectations of the compensating variation are provided. Results are specialised for multinomial logit and probit. In the case without income effects, it is proved that the unconditional expectation of the compensating variation depends only on the marginal distributions.The theory is illustrated by a numerical example which refers to a multinomial logit applied to the choice of the transport mode with two specifications, one without and one with income effects. Results show that transition probabilities and conditional welfare measures are affected significantly by the assumption on the before–after correlation. The variability in the transition probabilities across transitions tends to decrease as the before–after correlation decreases. In the extreme case of independent random terms, the conditional expectations of the compensating variation tend to be close to the unconditional expectation.  相似文献   

9.
Recent advances in the specification of the utility function of mixed logit models allow the analyst, in principle, to consider a vast variety of individual heterogeneity. Nevertheless, when estimating the model it is common practice to experience severe difficulties in discriminating between different specifications to infer the “true” data generating process. We investigate possible sources for this difficulty focusing on the confounding effects inherent in two basic assumptions of discrete choice model utilities: linearity in the parameters and added error terms. We analyse the role of these assumptions in giving rise to confounding effects and why this increases the difficulty of discriminating among different structures. Finally, we investigate how these problems may affect benefit appraisal using these models. Empirical evidence is provided for two different environmental contexts and a more typical transport context using various kinds of data.  相似文献   

10.
The goal of a network design problem (NDP) is to make optimal decisions to achieve a certain objective such as minimizing total travel time or maximizing tolls collected in the network. A critical component to NDP is how travelers make their route choices. Researchers in transportation have adopted human decision theories to describe more accurate route choice behaviors. In this paper, we review the NDP with various route choice models: the random utility model (RUM), random regret-minimization (RRM) model, bounded rationality (BR), cumulative prospect theory (CPT), the fuzzy logic model (FLM) and dynamic learning models. Moreover, we identify challenges in applying behavioral route choice models to NDP and opportunities for future research.  相似文献   

11.
Count models are used for analyzing outcomes that can only take non-negative integer values with or without any pre-specified large upper limit. However, count models are typically considered to be different from random utility models such as the multinomial logit (MNL) model. In this paper, Generalized Extreme Value (GEV) models that are consistent with the Random Utility Maximization (RUM) framework and that subsume standard count models including Poisson, Geometric, Negative Binomial, Binomial, and Logarithmic models as special cases were developed. The ability of the Maximum Likelihood (ML) inference approach to retrieve the parameters of the resulting GEV count models was examined using synthetic data. The simulation results indicate that the ML estimation technique performs quite well in terms of recovering the true parameters of the proposed GEV count models. Also, the models developed were used to analyze the monthly telecommuting frequency decisions of workers. Overall, the empirical results demonstrate superior data fit and better predictive performance of the GEV models compared to standard count models.  相似文献   

12.
This paper proposes a discrete mixture model which assigns individuals, up to a probability, to either a class of random utility (RU) maximizers or a class of random regret (RR) minimizers, on the basis of their sequence of observed choices. Our proposed model advances the state of the art of RU–RR mixture models by (i) adding and simultaneously estimating a membership model which predicts the probability of belonging to a RU or RR class; (ii) adding a layer of random taste heterogeneity within each behavioural class; and (iii) deriving a welfare measure associated with the RU–RR mixture model and consistent with referendum-voting, which is the adequate mechanism of provision for such local public goods. The context of our empirical application is a stated choice experiment concerning traffic calming schemes. We find that the random parameter RU–RR mixture model not only outperforms its fixed coefficient counterpart in terms of fit—as expected—but also in terms of plausibility of membership determinants of behavioural class. In line with psychological theories of regret, we find that, compared to respondents who are familiar with the choice context (i.e. the traffic calming scheme), unfamiliar respondents are more likely to be regret minimizers than utility maximizers.  相似文献   

13.
Hensher  David A. 《Transportation》2001,28(2):101-118
The empirical valuation of travel time savings is a derivative of the ratio of parameter estimates in a discrete choice model. The most common formulation (multinomial logit) imposes strong restrictions on the profile of the unobserved influences on choice as represented by the random component of a preference function. As we progress our ability to relax these restrictions we open up opportunities to benchmark the values derived from simple (albeit relatively restrictive) models. In this paper we contrast the values of travel time savings derived from multinomial logit and alternative specifications of mixed (or random parameter) logit models. The empirical setting is urban car commuting in six locations in New Zealand. The evidence suggests that less restrictive choice model specifications tend to produce higher estimates of values of time savings compared to the multinomial logit model; however the degree of under-estimation of multinomial logit remains quite variable, depending on the context.  相似文献   

14.

Previous choice studies have proposed a way to condition the utility of each alternative in a choice set on experience with the alternatives accumulated over previous periods, defined either as a mode used or not in a most recent trip, or the mode chosen in their most recent trip and the number of similar one-way trips made during the last week. The paper found that the overall statistical performance of the mixed logit model improved significantly, suggesting that this conditioning idea has merit. Experience was treated as an exogenous influence linked to the scale of the random component, and to that extent it captures some amount of the heterogeneity in unobserved effects, purging them of potential endogeneity. The current paper continues to investigate the matter of endogeneity versus exogeneity. The proposed approach implements the control function method through the experience conditioning feature in a choice model. We develop two choice models, both using stated preference data. The paper extends the received contribution in that we allow for the endogenous variable to have an impact on the attributes through a two stage method, called the Multiple Indicator Solution, originally implemented in a different context and for a single (quality) attribute, in which stage two is the popular control function method. In the first stage, the entire utility expression associated with all observed attributes is conditioned on the prior experience with an alternative. Hence, we are capturing possible correlates associated with each and every attribute and not just one selected attribute. We find evidence of potential endogeneity. The purging exercise however, results in both statistical similarities and differences in time and cost choice elasticities and mean estimates of the value of travel time savings. We are able to identify a very practical method to correct for possible endogeneity under experience conditioning that will encourage researchers and practitioners to use such an approach in more advanced non-linear discrete choice models as a matter of routine.

  相似文献   

15.
This paper proposes a new random utility model characterised by a cumulative distribution function (cdf) obtained as a finite mixture of different cdfs. This entails that choice probabilities, covariances and elasticities of this model are also a finite mixture of choice probabilities, covariances and elasticities of the mixing models. As a consequence, by mixing nested logit cdfs, a model is generated with closed-form expressions for choice probabilities, covariances and elasticities and with, potentially, a very flexible correlation pattern. Importantly, the closed-form covariance expression opens up interesting application possibilities in some special choice contexts, like route choice, where prior expectations in terms of the covariance matrix can be formulated.  相似文献   

16.
In recent years we have seen important extensions of logit models in behavioural research such as incorporation of preference and scale heterogeneity, attribute processing heuristics, and estimation of willingness to pay (WTP) in WTP space. With rare exception, however, a non-linear treatment of the parameter set to allow for behavioural reality, such as embedded risk attitude and perceptual conditioning of occurrence probabilities attached to specific attributes, is absent. This is especially relevant to the recent focus in travel behaviour research on identifying the willingness to pay for reduced travel time variability, which is the source of estimates of the value of trip reliability that has been shown to take on an increasingly important role in project appraisal. This paper incorporates, in a generalised non-linear (in parameters) logit model, alternative functional forms for perceptual conditioning (known as probability weighting) and risk attitude in the utility function to account for travel time variability, and then derives an empirical estimate of the willingness to pay for trip time variability-embedded travel time savings as an alternative to separate estimates of time savings and trip time reliability. We illustrate the richness of the approach using a stated choice data set for commuter choice between unlabelled attribute packages. Statistically significant risk attitude parameters and parameters underlying decision weights are estimated for multinomial logit and mixed multinomial logit models, along with values of expected travel time savings.  相似文献   

17.
This paper derives, estimates and applies a discrete choice model of activity-travel behaviour that accommodates potential effects of task complexity and time pressure on decision-making. To the best of our knowledge, this is the first time that both factors (task complexity and time pressure) are jointly captured in a discrete choice model. More specifically, our heteroscedastic logit model captures potential impacts of task complexity and time pressure through the scale of the utility of activity-travel options. We collect data using a novel activity-travel simulator experiment that has been specifically designed with the aim of testing our model. Results are in line with expectations, in that higher levels of task complexity and time pressure are found to result in a smaller scale of utility. In other words, higher levels of task complexity and time pressure lead to more random choice behaviour and as a consequence to less pronounced differences in choice probabilities between alternatives. An empirical illustration suggests that choice probability-differences between models that do and those that do not capture these effects, can be very substantial; this in turn suggests that failing to capture the effects of task complexity and time pressure in discrete choice models of activity travel decision-making might lead to serious bias in forecasts of the effects of transport policies.  相似文献   

18.
In this paper, two‐tier mathematical models were developed to simulate the microscopic pedestrian decision‐making process of route choice at signalized crosswalks. In the first tier, a discrete choice model was proposed to predict the choices of walking direction. In the second tier, an exponential model was calibrated to determine the step size in the chosen direction. First, a utility function was defined in the first‐tier model to describe the change of utility in response to deviation from a pedestrian's target direction and the conflicting effects of neighboring pedestrians. A mixed logit model was adopted to estimate the effects of the explanatory variables on the pedestrians' decisions. Compared with the standard multinomial logit model, it was shown that the mixed logit model could accommodate the heterogeneity. The repeated observations for each pedestrian were grouped as panel data to ensure that the parameters remained constant for individual pedestrians but varied among the pedestrians. The mixed logit model with panel data was found to effectively address inter‐pedestrian heterogeneity and resulted in a better fit than the standard multinomial logit model. Second, an exponential model in the second tier was proposed to further determine the step size of individual pedestrians in the chosen direction; it indicates the change in walking speed in response to the presence of other pedestrians. Finally, validation was conducted on an independent set of observation data in Hong Kong. The pedestrians' routes and destinations were predicted with the two‐tier models. Compared with the tracked trajectories, the average error between the predicted destinations and the observed destinations was within an acceptable margin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The opportunity to have seven data sets associated with a stated choice experiment that are very similar in content and design is rare, and provides an opportunity to look in detail at the empirical evidence within and between each data set in the context of a range of discrete choice estimation methods, from multinomial logit to latent class to scale multinomial logit to mixed logit, and the most general model, generalized mixed multinomial logit that accounts for preference and scale heterogeneity. Given the problems associated with data from different countries and time periods, we estimate separate models for each data set, obtaining values of travel time savings that are then updated post estimation to a common dollar for comparative purposes. We also pooled all data sets for a scaled MNL model, treating each data set as a set of three separate utility expressions, but linked to the other data sets through scale heterogeneity. This is not behaviourally appropriate with MNL, latent class or mixed logit. The main question investigated is whether there exists greater synergy in the willingness to pay evidence within model form across data sets compared to across model forms within data sets. The evidence suggests that there is a relatively greater convergence of evidence across the choice models, with the exception of generalized mixed logit, after controlling for data set differences; and there is strong evidence to suggest that differences between data sets do matter.  相似文献   

20.
Methods of estimating choice probabilities between multiple alternatives are described, within the context of various methods of specifying the degree of correlation between the alternatives. A utility maximising framework is assumed. The models described are based either on the logit family or multinomial probit. Two new methods of analytical approximation for the multinomial probit model are introduced, which appear to show significant advantages over the traditional Clark method. Some comparative results of choice probability estimates are presented to support this contention. The conclusion discusses the relative usefulness of different choice estimation methods for different types of problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号