首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the quality of travel time information provided to motorists, there is a need to move away from point forecasts of travel time. Specifically, techniques are needed which predict the range of travel times which motorists may experience. This paper focuses on travel time prediction on motorways and evaluates three models for predicting the travel time range in real time as well as up to 1 h ahead. The first model, termed lane by lane tracing, relies on speed data from each lane to replicate the trajectories of relatively slow and relatively fast vehicles on the basis of speed differences across the lanes. The second model is based on the relationship between mean travel time (estimated using a neural network model) and driver-to-driver travel time variability. The results provide insight into the relative merits of the proposed techniques and confirm that they provide a basis for reliable travel time range prediction in the short-term prediction context (up to 1 h ahead).  相似文献   

2.
There exist systems which can be usefully described by a network containingarcs through which a commodity of one type flows. This paper is concerned with finding a solution procedure for a particular multi-commodity flow network design problem. The problem is to identify a set of arcs in the network such that if travel is prohibited in them all flow travels by feasible paths and its total cost is minimal. The total flow in each arc may not exced its capacity, which is a known constant. Each arc and each node of the network has a non-negative constant unit traversal cost. Between each pair of distinct nodes there is a given non-negative rate of flow from the first vertex to the second which may be split up among a number of paths according to some constant traversal cost flow assignment process. The optimality criterion is the total traversal cost of all flow, which is to be minimized. Previous work on network design problems of this type is surveyed. The principal contribution of this paper is the presentation of a solution procedure for the above problem based on branch and bound enumeration. An illustrative numerical example is included. Computational experience gained in using the procedure with a FORTRAN IV program on an IBM 370 is favourable.  相似文献   

3.
This paper presents a reliability‐based network design problem. A network reliability concept is embedded into the continuous network design problem in which travelers' route choice behavior follows the stochastic user equilibrium assumption. A new capacity‐reliability index is introduced to measure the probability that all of the network links are operated below their capacities when serving different traffic patterns deviating from the average condition. The reliability‐based network design problem is formulated as a bi‐level program in which the lower level sub‐program is the probit‐based stochastic user equilibrium problem and the upper level sub‐program is the maximization of the new capacity reliability index. The lower level sub‐program is solved by a variant of the method of successive averages using the exponential average to represent the learning process of network users on a daily basis that results in the daily variation of traffic‐flow pattern, and Monte Carlo stochastic loading. The upper level sub‐program is tackled by means of genetic algorithms. A numerical example is used to demonstrate the concept of the proposed framework.  相似文献   

4.
The use of fossil fuels in transportation generates harmful emissions that accounts for nearly half of the total pollutants in urban areas. Dealing with this issue, local authorities are dedicating specific efforts to seize the opportunity offered by new fuels and technological innovations in achieving a cleaner urban mobility. In fact, authorities are improving environmental performances of their public transport fleet by procuring cleaner vehicles, usually called low and zero emission vehicles (LEV and ZEV, respectively). Nevertheless there seems to be a lack of methodologies for supporting stakeholders in decisions related to the introduction of green vehicles, whose allocation should be performed since the network design process in order to optimize their available green capacity.In this paper, the problem of clean vehicle allocation in an existing public fleet is faced by introducing a method for solving the transit network design problem in a multimodal, demand elastic urban context dealing with the impacts deriving from transportation emissions.The solving procedure consists of a set of heuristics which includes a routine for route generation and a genetic algorithm for finding a sub-optimal set of routes with the associated frequencies.  相似文献   

5.
Kato  Teppei  Uchida  Kenetsu  Lam  William H. K.  Sumalee  Agachai 《Transportation》2021,48(4):1639-1670
Transportation - Travel time reliability has been recognized as an important factor in cost–benefit analysis in a transportation network. To estimate the benefit and cost of travel time...  相似文献   

6.
Travel demand analyses are useful for transportation planning and policy development in a study area. However, travel demand modeling faces two obstacles. First, standard practice solves the four travel components (trip generation, trip distribution, modal split and network assignment) in a sequential manner. This can result in inconsistencies and non-convergence. Second, the data required are often complex and difficult to manage. Recent advances in formal methods for network equilibrium-based travel demand modeling and computational platforms for spatial data handling can overcome these obstacles. In this paper we report on the development of a prototype geographic information system (GIS) design to support network equilibrium-based travel demand models. The GIS design has several key features, including: (i) realistic representation of the multimodal transportation network, (ii) increased likelihood of database integrity after updates, (iii) effective user interfaces, and (iv) efficient implementation of network equilibrium solution algorithms.  相似文献   

7.
This article examines the effects of various network extraction schemes on the network design problem. Given an original network, many criteria can be used to identify subnetworks on which the network design problem is solved. For the purposes of this article, these subnetworks are obtained using an extraction algorithm which preserves the magnitude of the user equilibrium flows on the links of these subnetworks. The results of the implementation of the network design problem on the original and the extracted subnetworks are presented and compared. We conclude that very good solutions to the network design problem can be obtained from the use of highly aggregate networks.  相似文献   

8.
This paper investigates a multi-fleet ferry routing and scheduling problem that takes into account ferry services with different operation characteristics and passengers with different preferred arrival time windows. The logit model is used to represent passengers’ service choices. The full problem is formulated as a mixed integer nonlinear programming problem and solved with a heuristic procedure that first fixes the demand and then decomposes the resultant model by ferry services. At each iteration of the algorithm, the demand is updated and the relaxed problem is re-solved. Numerical results for the case of ferry service network design in Hong Kong are provided to illustrate the properties of the model and the performance of the heuristic.  相似文献   

9.
This paper investigates the multimodal network design problem (MMNDP) that optimizes the auto network expansion scheme and bus network design scheme in an integrated manner. The problem is formulated as a single-level mathematical program with complementarity constraints (MPCC). The decision variables, including the expanded capacity of auto links, the layout of bus routes, the fare levels and the route frequencies, are transformed into multiple sets of binary variables. The layout of transit routes is explicitly modeled using an alternative approach by introducing a set of complementarity constraints. The congestion interaction among different travel modes is captured by an asymmetric multimodal user equilibrium problem (MUE). An active-set algorithm is employed to deal with the MPCC, by sequentially solving a relaxed MMNDP and a scheme updating problem. Numerical tests on nine-node and Sioux Falls networks are performed to demonstrate the proposed model and algorithm.  相似文献   

10.
The discrete network design problem is one of finding a set of feasible actions (projects) from among a collection of possible actions, that when implemented, optimizes some objective function(s). This is a combinatorial optimization problem that is very expensive to solve exactly. This paper proposes two algorithms for obtaining approximate solutions to the discrete network design problem with much less computational effeort. The computational savings are achieved by approximating the original problem with a new formulation which is easier to solve. The first algorithm proposed solves this approximate problem exactly, while the second is even more efficient, but provides only a near-optimal solution to the approximate problem. Experience with test problems indicates that these approximations can reduce the computational effort by a factor of 3–5, with little loss in solution accuracy.  相似文献   

11.
Application of Ant System to network design problem   总被引:4,自引:0,他引:4  
Network design problem (NDP) is the problem of choosing from among a set of alternative projects which optimizes an objective (e.g., minimizes total travel time), while keeping consumption of resources (e.g., budget) within their limits. This problem is difficult to solve, because of its combinatorial nature and nonconvexity of the objective function. Many algorithms are presented to solve the problem more efficiently, while trading-off accuracy with computational speed. This increase in speed stems from certain approximations in the formulation of the problem, decomposition, or heuristics. This study adapts a meta – heuristic approach to solve NDP, namely Ant System (AS). The algorithm is first designed, and then calibrated to solve NDP for the Sioux Falls test network. The behavior of the algorithm is then investigated. The result seems encouraging.  相似文献   

12.
This paper addresses the problem of dynamic travel time (DTT) forecasting within highway traffic networks using speed measurements. Definitions, computational details and properties in the construction of DTT are provided. DTT is dynamically clustered using a K-means algorithm and then information on the level and the trend of the centroid of the clusters is used to devise a predictor computationally simple to be implemented. To take into account the lack of information in the cluster assignment for the new predicted values, a weighted average fusion based on a similarity measurement is proposed to combine the predictions of each model. The algorithm is deployed in a real time application and the performance is evaluated using real traffic data from the South Ring of the Grenoble city in France.  相似文献   

13.
An assumption that pervades the current transportation system reliability assessment literature is that probability distributions of the sources of uncertainty are known explicitly. However, this distribution may be unavailable (inaccurate) in reality as we may have no (insufficient) data to calibrate the distribution. In this paper we relax this assumption and present a new method to assess travel time reliability that is distribution-free in the sense that the methodology only requires that the first N moments (where N is a user-specified positive integer) of the travel time to be known and that the travel times reside in a set of bounded and known intervals. Because of our modeling approach, all sources of uncertainty are automatically accounted for, as long as they are statistically independent. Instead of deriving exact probabilities on travel times exceeding certain thresholds via computationally intensive methods, we develop semi-analytical probability inequalities to quickly (i.e. within a fraction of a second) obtain upper bounds on the desired probability. Numerical experiments suggest that the inclusion of higher order moments can potentially significantly improve the bounds. The case study also demonstrates that the derived bounds are nontrivial for a large range of travel time values.  相似文献   

14.
The optimal transportation network design problem is formulated as a convex nonlinear programming problem and a solution method based on standard traffic assignment algorithms is presented. The technique can deal with network improvements which introduce new links, which increase the capacity of existing links, or which decrease the free-flow (uncongested) travel time on existing links (with or without simultaneously increasing link capacity). Preliminary computational experience with the method demonstrates that it is capable of solving very large problems with reasonable amounts of computer time.  相似文献   

15.
This paper is the second of a pair of papers discussing two main themes concerning dense network modelling. These themes are: (1) the changing nature of traffic management technology and the underlying objectives behind traffic management practice, and (2) the use of measures of network reliability in models, especially as an element of the evaluation of alternative network configurations. This paper develops and applies the second theme, the use of network reliability concepts in the evaluation of traffic networks, through consideration of variations in travel times, distinction between local street and arterial road networks, and the definition and application of a set of reliability indices that may be used to study different trip movements in a network. It indicates how these indices may be used in appraising different traffic management plans for a dense network of local streets and arterial roads, using a case study application.  相似文献   

16.
Two versions of an optimal network design problem with shipments proportional to transportation costs are formulated. Extensions of an algorithm developed in prior research for solving these problems are proposed and tested. The performance of the algorithms is found to improve substantially as the dependence of shipments on costs is increased. Moreover, the optimal solutions obtained are unexpectedly robust with respect to a wide range of transportation cost assumptions. These findings could have important computational and policy implications if applicable to larger networks.  相似文献   

17.
This paper is about distance and time as factors of competitiveness of intermodal transport. It reviews the relevance of the factors, evaluates time models in practice, compares network distances and times in alternative bundling networks with geometrically varied layouts, and points out how these networks perform in terms of vehicle scale, frequency and door-to-door time. The analysis focuses on intermodal transport in Europe, especially intermodal rail transport, but is in search for generic conclusions. The paper does not incorporate the distance and time results in cost models, and draws conclusions for transport innovation, wherever this is possible without cost modelling. For instance, the feature vehicle scale, an important factor of transport costs, is analysed and discussed.Distance and time are important factors of competitiveness of intermodal transport. They generate (direct) vehicle costs and – via transport quality – indirect costs to the customers. Clearly direct costs/prices are the most important performance of the intermodal transport system. The relevance of quality performances is less clarified. Customers emphasise the importance of a good match between the transport and the logistic system. In this framework (time) reliability is valued high. Often transport time, arrival and departure times, and frequency have a lower priority. But such conclusions can hardy be generalised. The range of valuations reflects the heterogeneity of situations. Some lack of clarity is obviously due to overlapping definitions of different performance types.The following parts of the paper are about two central fields of network design, which have a large impact on transport costs and quality, namely the design of vehicle roundtrips (and acceleration of transport speed) and the choice of bundling type: do vehicles provide direct services or run in what we call complex bundling networks? An example is the hub-and-spoke network. The objective of complex bundling is to increase vehicle scale and/or transport frequency even if network volumes are restricted. Complex bundling requires intermediate nodes for the exchange of load units. Examples of complex bundling networks are the hub-and-spoke network or the line network.Roundtrip and bundling design are interrelated policy fields: an acceleration of the roundtrip speed, often desirable from the cost point of view, can often only be carried out customer friendly, if the transport frequency is increased. But often the flow size is not sufficient for a higher frequency. Then a change of bundling model can be an outcome.Complex bundling networks are known to have longer average distances and times, the latter also due to the presence of additional intermediate exchange nodes. However, this disadvantage is – inside the limits of maximal vehicle sizes – overruled by the advantage of a restricted number of network links. Therefore generally, complex bundling networks have shorter total vehicle distances and times. This expression of economies of scale implies lower vehicle costs per load unit.The last part of the paper presents door-to-door times of load units of complex bundling networks and compares them with unimodal road transport. The times of complex bundling networks are larger than that of networks with direct connections, but nevertheless competitive with unimodal road transport, except for short distances.  相似文献   

18.
19.
20.
In this paper, urban network design is analysed through a heuristic multi-criteria technique based on genetic algorithms. Both network layout and link capacity (link layout and traffic lights) are optimised. Different optimisation criteria are included for users, non-users and public system managers. Demand is considered elastic with respect to mode choice; both morning and afternoon peak periods are taken into account. In addition, choice of parking location is simulated. The procedure is applied to a test and to a real transportation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号