首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsimulation of urban systems evolution requires synthetic population as a key input. Currently, the focus is on treating synthesis as a fitting problem and thus various techniques have been developed, including Iterative Proportional Fitting (IPF) and Combinatorial Optimization based techniques. The key shortcomings of these procedures include: (a) fitting of one contingency table, while there may be other solutions matching the available data (b) due to cloning rather than true synthesis of the population, losing the heterogeneity that may not have been captured in the microdata (c) over reliance on the accuracy of the data to determine the cloning weights (d) poor scalability with respect to the increase in number of attributes of the synthesized agents. In order to overcome these shortcomings, we propose a Markov Chain Monte Carlo (MCMC) simulation based approach. Partial views of the joint distribution of agent’s attributes that are available from various data sources can be used to simulate draws from the original distribution. The real population from Swiss census is used to compare the performance of simulation based synthesis with the standard IPF. The standard root mean square error statistics indicated that even the worst case simulation based synthesis (SRMSE = 0.35) outperformed the best case IPF synthesis (SRMSE = 0.64). We also used this methodology to generate the synthetic population for Brussels, Belgium where the data availability was highly limited.  相似文献   

2.
In this paper, we investigate the influence of scalability on the accuracy of different synthetic populations using both fitting and generation-based approaches. Most activity-based models need a base-year synthetic population of agents with various attributes. However, when several attributes need to be synthesized, the accuracy of the synthetic population may decrease due to the mixed effects of scalability and dimensionality. We analyze two population synthesis methods for different levels of scalability, i.e. two to five attributes and different sample sizes – 10%, 25% and 50%. Results reveal that the simulation-based approach is more stable than Iterative Proportional Fitting (IPF) when the number of attributes increases. However, IPF is less sensitive to changes in sample size when compared to the simulation-based approach. We also demonstrate the importance of choosing the appropriate metric to validate the synthetic populations as the trends in terms of RMSE/MAE are different from those of SRMSE.  相似文献   

3.
Agent-based microsimulation models of transportation, land use or other socioeconomic processes require an initial synthetic population derived from census data, conventionally created using the iterative proportional fitting (IPF) procedure. This paper introduces a novel computational method that allows the synthesis of many more attributes and finer attribute categories than previous approaches, both of which are long-standing limitations discussed in the literature. Additionally, a new approach is used to fit household and person zonal attribute distributions simultaneously. This technique was first adopted to address limitations specific to Canadian census data, but could also be useful in U.S. and other applications. The results of each new method are evaluated empirically in terms of goodness-of-fit.  相似文献   

4.
Recent advances in agent-based micro-simulation modeling have further highlighted the importance of a thorough full synthetic population procedure for guaranteeing the correct characterization of real-world populations and underlying travel demands. In this regard, we propose an integrated approach including Markov Chain Monte Carlo (MCMC) simulation and profiling-based methods to capture the behavioral complexity and the great heterogeneity of agents of the true population through representative micro-samples. The population synthesis method is capable of building the joint distribution of a given population with its corresponding marginal distributions using either full or partial conditional probabilities or both of them simultaneously. In particular, the estimation of socio-demographic or transport-related variables and the characterization of daily activity-travel patterns are included within the framework. The fully probabilistic structure based on Markov Chains characterizing this framework makes it innovative compared to standard activity-based models. Moreover, data stemming from the 2010 Belgian Household Daily Travel Survey (BELDAM) are used to calibrate the modeling framework. We illustrate that this framework effectively captures the behavioral heterogeneity of travelers. Furthermore, we demonstrate that the proposed framework is adequately adapted to meeting the demand for large-scale micro-simulation scenarios of transportation and urban systems.  相似文献   

5.
Due to the high cost, low response rate and time-consuming data processing, few Metropolitan Planning Organizations can afford collecting household travel survey data as frequently as needed. This paper presents a methodology to simulate disaggregate and synthetic household travel survey data by examining the feasibility of the spatial transferability of travel data. Households are clustered into several homogeneous groups to identify the distributions of their travel attributes. These distributions are then transferred to similar groups in other regions. Furthermore, updating methods are suggested and developed to calibrate the parameters of the transferred distributions for the application area. A user friendly software is developed that facilitates the entire process. To validate the model, a synthetic population for the state of New York, excluding the New York City, is generated by a two-stage population synthesis procedure. Then, travel attributes of each household are simulated and by linking the generated travel data to the synthetic population, a synthetic household travel dataset is generated for the application context. Finally, using a new validation dataset from the application area, comparisons against the simulated data are made to examine the effectiveness of the simulation process.  相似文献   

6.
Agent-based micro-simulation models require a complete list of agents with detailed demographic/socioeconomic information for the purpose of behavior modeling and simulation. This paper introduces a new alternative for population synthesis based on Bayesian networks. A Bayesian network is a graphical representation of a joint probability distribution, encoding probabilistic relationships among a set of variables in an efficient way. Similar to the previously developed probabilistic approach, in this paper, we consider the population synthesis problem to be the inference of a joint probability distribution. In this sense, the Bayesian network model becomes an efficient tool that allows us to compactly represent/reproduce the structure of the population system and preserve privacy and confidentiality in the meanwhile. We demonstrate and assess the performance of this approach in generating synthetic population for Singapore, by using the Household Interview Travel Survey (HITS) data as the known test population. Our results show that the introduced Bayesian network approach is powerful in characterizing the underlying joint distribution, and meanwhile the overfitting of data can be avoided as much as possible.  相似文献   

7.
Xiong  Chenfeng  Yang  Di  Ma  Jiaqi  Chen  Xiqun  Zhang  Lei 《Transportation》2020,47(2):585-605

As an emerging dynamic modeling method that incorporates time-dependent heterogeneity, hidden Markov models (HMM) are receiving increased research attention with regards to travel behavior modeling and travel demand forecasting. This paper focuses on the model transferability of HMM. Based on a series of transferability and goodness-of-fit measures, it finds that HMMs have a superior performance in predicting future transportation mode choice, compared to conventional choice models. Aimed at further enhancing its transferability, this paper proposes a Bayesian conditional recalibration approach that maps the model prediction directly to the context data. Compared to traditional model transferring methods, the proposed approach does not assume fixed parameterization and recalibrates the utilities and the prediction directly. A comparison between the proposed approach and the traditional transfer-scaling favors our approach, with higher goodness-of-fit. This paper fills the gap in understanding the transferability of HMM and proposes a practical method that enables potential applications of HMM.

  相似文献   

8.
Poor driving habits such as not using turn signals when changing lanes present a major challenge to advanced driver assistance systems that rely on turn signals. To address this problem, we propose a novel algorithm combining the hidden Markov model (HMM) and Bayesian filtering (BF) techniques to recognize a driver’s lane changing intention. In the HMM component, the grammar definition is inspired by speech recognition models, and the output is a preliminary behavior classification. As for the BF component, the final behavior classification is produced based on the current and preceding outputs of the HMMs. A naturalistic data set is used to train and validate the proposed algorithm. The results reveal that the proposed HMM–BF framework can achieve a recognition accuracy of 93.5% and 90.3% for right and left lane changing, respectively, which is a significant improvement compared with the HMM-only algorithm. The recognition time results show that the proposed algorithm can recognize a behavior correctly at an early stage.  相似文献   

9.
This paper proposes a conceptual framework to model the travel mode searching and switching dynamics. The proposed approach is structurally different from existing mode choice models in the way that a non-homogeneous hidden Markov model (HMM) has been constructed and estimated to model the dynamic mode srching process. In the proposed model, each hidden state represents the latent modal preference of each traveler. The empirical application suggests that the states can be interpreted as car loving and carpool/transit loving, respectively. At each time period, transitions between the states are functions of time-varying covariates such as travel time and travel cost of the habitual modes. The level-of-service (LOS) changes are believed to have an enduring impact by shifting travelers to a different state. While longitudinal data is not readily available, the paper develops an easy-to-implement memory-recall survey to collect required process data for the empirical estimation. Bayesian estimation and Markov chain Monte Carlo method have been applied to implement full Bayesian inference. As demonstrated in the paper, the estimated HMM is reasonably sensitive to mode-specific LOS changes and can capture individual and system dynamics. Once applied with travel demand and/or traffic simulation models, the proposed model can describe time-dependent multimodal behavior responses to various planning/policy stimuli.  相似文献   

10.
Developing microscopic traffic simulation models requires the knowledge of probability distributions of microscopic traffic variables. Although previous studies have proposed extensive mathematical distributions for describing traffic variables (e.g., speed, headway, vehicle length, etc.), these studies usually consider microscopic traffic observations to be independent variables and distributions for these variables are investigated separately. As a result, some traditional approaches consider microscopic traffic variables as independent inputs to the traffic simulation process and these methods may ignore the possible dependence among different traffic variables.The objectives of this paper are to investigate the dependence structure among microscopic traffic variables and to examine the applicability of the copula approach to the joint modeling of these variables. Copulas are functions that relate multivariate distribution functions of random variables to their one-dimensional marginal distribution functions. The concept of copulas has been well recognized in the statistics field and recently has been introduced in transportation studies. The proposed copula approach is applied to the 24-h traffic data collected on IH-35 in Austin, Texas. The preliminary data analysis indicates that there exists dependence among microscopic traffic variables. Moreover, the modeling and simulation results suggest that copula models can adequately accommodate and accurately reproduce the dependence structure revealed by the traffic observations. Overall, the findings in this paper provide a framework for generating multiple microscopic traffic variables simultaneously by considering their dependence.  相似文献   

11.
The paper presents a population synthesiser based on the method of Iterative Proportional Fitting (IPF) algorithm developed for the new Danish national transport model system. The synthesiser is designed for large population matrices and allows target variables to be represented in several target constraints. As a result, constraints for the IPF are cross-linked, which makes it difficult to ensure consistency of targets in a forecast perspective. The paper proposes a new solution strategy to ensure internal consistency of the population targets in order to guarantee proper convergence of the IPF algorithm. The solution strategy consists in establishing a harmonisation process for the population targets, which combined with a linear programming approach, is applied to generate a consistent target representation. The model approach is implemented and tested on Danish administrative register data. A test on historical census data shows that a 2006 population could be predicted by a 1994 population with an overall percentage deviation of 5-6% given that targets were known. It is also indicated that the deviation is approximately a linear function of the length of the forecast period.  相似文献   

12.
The estimation of discrete choice models requires measuring the attributes describing the alternatives within each individual’s choice set. Even though some attributes are intrinsically stochastic (e.g. travel times) or are subject to non-negligible measurement errors (e.g. waiting times), they are usually assumed fixed and deterministic. Indeed, even an accurate measurement can be biased as it might differ from the original (experienced) value perceived by the individual.Experimental evidence suggests that discrepancies between the values measured by the modeller and experienced by the individuals can lead to incorrect parameter estimates. On the other hand, there is an important trade-off between data quality and collection costs. This paper explores the inclusion of stochastic variables in discrete choice models through an econometric analysis that allows identifying the most suitable specifications. Various model specifications were experimentally tested using synthetic data; comparisons included tests for unbiased parameter estimation and computation of marginal rates of substitution. Model specifications were also tested using a real case databank featuring two travel time measurements, associated with different levels of accuracy.Results show that in most cases an error components model can effectively deal with stochastic variables. A random coefficients model can only effectively deal with stochastic variables when their randomness is directly proportional to the value of the attribute. Another interesting result is the presence of confounding effects that are very difficult, if not impossible, to isolate when more flexible models are used to capture stochastic variations. Due the presence of confounding effects when estimating flexible models, the estimated parameters should be carefully analysed to avoid misinterpretations. Also, as in previous misspecification tests reported in the literature, the Multinomial Logit model proves to be quite robust for estimating marginal rates of substitution, especially when models are estimated with large samples.  相似文献   

13.
Traffic equilibrium models are fundamental to the analysis of transportation systems. The stochastic user equilibrium (SUE) model which relaxes the perfect information assumption of the deterministic user equilibrium is one such model. The aim of this paper is to develop a new user equilibrium model, namely the MDM-SUE model, that uses the marginal distribution model (MDM) as the underlying route choice model. In this choice model, the marginal distributions of the path utilities are specified but the joint distribution is not. By focusing on the joint distribution that maximizes expected utility, we show that MDM-SUE exists and is unique under mild assumptions on the marginal distributions. We develop a convex optimization formulation for the MDM-SUE. For specific choices of marginal distributions, the MDM-SUE model recreates the optimization formulation of logit SUE and weibit SUE. Moreover, the model is flexible since it can capture perception variance scaling at the route level and allows for modeling different user preferences by allowing for skewed distributions and heavy tailed distributions. The model can also be generalized to incorporate bounded support distributions and discrete distributions which allows to distinguish between used and unused routes within the SUE framework. We adapt the method of successive averages to develop an efficient approach to compute MDM-SUE traffic flows. In our numerical experiments, we test the ability of MDM-SUE to relax the assumption that the error terms are independently and identically distributed random variables as in the logit models and study the additional modeling flexibility that MDM-SUE provides on small-sized networks as well as on the large network of the city of Winnipeg. The results indicate that the model provides both modeling flexibility and computational tractability in traffic equilibrium.  相似文献   

14.
Estimating the travel time reliability (TTR) of urban arterial is critical for real-time and reliable route guidance and provides theoretical bases and technical support for sophisticated traffic management and control. The state-of-art procedures for arterial TTR estimation usually assume that path travel time follows a certain distribution, with less consideration about segment correlations. However, the conventional approach is usually unrealistic because an important feature of urban arterial is the dependent structure of travel times on continuous segments. In this study, a copula-based approach that incorporates the stochastic characteristics of segments travel time is proposed to model arterial travel time distribution (TTD), which serves as a basis for TTR quantification. First, segments correlation is empirically analyzed and different types of copula models are examined. Then, fitting marginal distributions for segment TTD is conducted by parametric and non-parametric regression analysis, respectively. Based on the estimated parameters of the models, the best-fitting copula is determined in terms of the goodness-of-fit tests. Last, the model is examined at two study sites with AVI data and NGSIM trajectory data, respectively. The results of path TTD estimation demonstrate the advantage of the proposed copula-based approach, compared with the convolution model without capturing segments correlation and the empirical distribution fitting methods. Furthermore, when considering the segments correlation effect, it was found that the estimated path TTR is more accurate than that by the convolution model.  相似文献   

15.
The stock of durable goods can be represented by its holdings distribution, defined as the joint distribution of age and physical condition of the population of durable goods. This paper derives the holdings distribution which arises under stationary conditions when durable goods deteriorate according to a Markov process. We show that given the scrappage and utilization decisions of consumers, the holdings distribution F(x) is an equilibrium distribution of an associated regenerative Markov process. Using a basic result from the theory of regenerative stochastic processes, we characterize F(x) as the ratio of the expected number of periods the durable's condition is better than x to the expected lifetime of the asset. Using data from the 1977 National Transportation Survey we illustrate these results by estimating a simple two-parameter model of automobile deterioration and comparing the implied distribution of automobile holdings to the actual distribution.  相似文献   

16.
17.
Activity generation models are relatively poorly developed in activity-based travel demand modelling frameworks. This research investigates whether observed distributions of activity attributes (activity frequency, start time and duration) used as inputs in the activity generation component of an activity-based travel demand model have changed over time. This research empirically examines changes in the distributions of activity generation attributes over time in the Greater Montreal area (GMA), Quebec, Canada. It also focuses on how these attributes vary with peoples’ socio-demographic characteristics. This research relies on the 1998, 2003 and 2008 origin–destination (O–D) household travel surveys of the GMA. The comparative analysis at three time points in a 10-year period clearly reveals that distributions of activity attributes are significantly changing over time. Work and school activities show similar trends; frequency “1” has increased and frequency “2+” has decreased over time. The occurrence of shopping activity on weekdays is decreasing over time. Start time and duration distributions for each activity have also changed significantly over time. The research allows preparing activity attributes for the application of an activity-based model, TASHA, such that they reflect temporal changes in travel behaviour of the GMA.  相似文献   

18.
Currently, the applicability of macroscopic Dynamic Network Loading (DNL) models for large-scale problems such as network-wide traffic management, reliability and vulnerability studies, network design, traffic flow optimization and dynamic origin–destination (OD) estimation is computationally problematic. The main reason is that these applications require a large number of DNL runs to be performed. Marginal DNL simulation, introduced in this paper, exploits the fact that the successive simulations often exhibit a large overlap. Through marginal simulation, repeated DNL simulations can be performed much faster by approximating each simulation as a variation to a base scenario. Thus, repetition of identical calculations is largely avoided. The marginal DNL algorithm that is presented, the Marginal Computation (MaC) algorithm, is based on first order kinematic wave theory. Hence, it realistically captures congestion dynamics. MaC can simulate both demand and supply variations, making it useful for a wide range of DNL applications. Case studies on different types of networks are presented to illustrate its performance.  相似文献   

19.
Given the potential benefits of bicycling to the environment, the economy, and public health, many U.S. cities have set ambitious goals for increasing the bicycle share of commute trips. The Transtheoretical Model of Behavior Change, which seeks to describe how positive and permanent change can be fostered in individuals, may shed light on how cities can most effectively increase bicycle commuting. We use the model’s “stages of change” framework to explore the potential for increased bicycle commuting to the UC Davis campus in Davis, California. Our analysis uses data from the 2012 to 2013 UC Davis Campus Travel Survey, an annual online survey that is randomly administered to students and employees at UC Davis. Based on their responses to questions about current commute mode and contemplation of bicycle commuting, respondents are divided into five stages of change: Pre-contemplation, Contemplation, Preparation, Action, and Maintenance. We construct a Bayesian multilevel ordinal logistic regression model to understand how differences in socio-demographic characteristics, travel attributes, and travel attitudes between individuals explain their membership in different stages of change. In addition, we use this model to explore the potential of various intervention strategies to move individuals through the stages of change toward becoming regular bicycle commuters. Our results indicate that travel attitudes matter more to progression toward regular commute bicycling than travel attributes, tentatively supporting the efficacy of “soft” policies focused on changing travel attitudes.  相似文献   

20.
Obtaining attribute values of non‐chosen alternatives in a revealed preference context is challenging because non‐chosen alternative attributes are unobserved by choosers, chooser perceptions of attribute values may not reflect reality, existing methods for imputing these values suffer from shortcomings, and obtaining non‐chosen attribute values is resource intensive. This paper presents a unique Bayesian (multiple) Imputation Multinomial Logit model that imputes unobserved travel times and distances of non‐chosen travel modes based on random draws from the conditional posterior distribution of missing values. The calibrated Bayesian (multiple) Imputation Multinomial Logit model imputes non‐chosen time and distance values that convincingly replicate observed choice behavior. Although network skims were used for calibration, more realistic data such as supplemental geographically referenced surveys or stated preference data may be preferred. The model is ideally suited for imputing variation in intrazonal non‐chosen mode attributes and for assessing the marginal impacts of travel policies, programs, or prices within traffic analysis zones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号