首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
焊接残余应力对疲劳寿命影响的定量研究   总被引:3,自引:0,他引:3  
在以往的研究中,残余应力对疲劳寿命的影响基本上均局限于定性分析,很少给出定量的研究结果。文章基于双参数统一方法,开展了锥柱结合壳处的残余应力对疲劳寿命的定量计算分析,给出了残余应力对疲劳寿命影响范围,并通过试样疲劳试验进行了验证。通过研究,可以看出残余应力没有改变裂纹的扩展趋势,但明显加快了裂纹扩展的过程,明显降低了耐压结构的疲劳寿命。  相似文献   

2.
The propagation of fatigue cracks under constant amplitude cyclic loading was studied in welded stiffened steel plates. The residual stresses in the stiffened plates were measured using the neutron diffraction strain-scanning technique. A finite element model of the stiffened plate was constructed to simulate the residual stresses by an uncoupled thermal and thermo-mechanical analysis. Both the finite element model and the neutron diffraction measurements indicated that in general the residual stresses were tensile near the welded stiffeners and compressive between the stiffeners and ahead of the starter notch tip. Fatigue testing indicated that the fatigue crack growth rates of the stiffened plates were in general lower than that of a corresponding unstiffened plate, especially near the notch tip where compressive residual stresses existed. Both the finite element method and Green's function predicted the fatigue crack growth rates with reasonable accuracy.  相似文献   

3.
4.
潜艇在潜浮过程中,由于静水外压引起的工作应力与焊接残余应力叠加,形成拉压循环应力,导致耐压船体的局部结构可能出现低周疲劳裂纹.一般情况下,高强度钢在抗拉强度提高的同时往往伴随着材料塑性储备和断裂韧性的下降,因此分析高强度钢潜艇结构的低周疲劳寿命非常重要.本文基于断裂力学和Paris公式建立了潜艇耐压结构低周疲劳寿命的工程估算方法,根据裂纹无损检测的概率统计和含裂纹圆柱壳极限应力分析,给出了初始裂纹和裂纹临界状态的建议值.应用本文的简化方法分析了某潜艇结构和锥柱结合壳模型的低周疲劳寿命,锥柱结合壳模型的数值算例表明本文的计算结果与试验测试结果相吻合.  相似文献   

5.
超高强度钢EH47广泛应用于超大型集装箱船舱口围板等区域结构中,建造过程中常常伴随着较大的焊接残余应力,直接影响到船体结构的安全及使用寿命。论文基于有限元分析软件ANSYS,对平板对接焊进行模拟,得到焊接残余应力的大小和分布,并采用盲孔法对焊缝区域进行残余应力测量。结果表明:残余应力在靠近焊缝中心及区域附近处表现为拉应力,随着逐渐往焊缝中心靠拢,拉应力迅速增大,当达到焊缝中心附近时拉应力达到最大值。随着逐渐远离焊缝中心,拉应力迅速减小,达到一定距离时转变为压应力,并在距离焊趾2.5 cm处达到压应力最大值,数值模拟结果与试验测量值基本吻合,同时焊后热处理能有效降低有损结构强度的焊接残余应力。  相似文献   

6.
Ships belong to those welded structures which are prone to fatigue due to high cyclic loads. Different approaches exist for the fatigue strength assessment which are varying between the industrial sectors. Therefore, deeper fatigue strength investigations were performed in Germany within an industry-wide joint research project aiming at the harmonization of the approaches. Regarding ship structures, two types were selected for full-scale tests. The first concerned web frame corners being typical for roll-on/roll-off ships (ro/ro) ships, from which three models were tested under constant amplitude loading. The second type was the intersection between longitudinals and transverse web frames, which recently showed fatigue failures in containerships. Five models were tested, three under constant and two under variable amplitude loading. All tests showed a relatively long crack propagation phase after first cracks had appeared, calling for a reasonable failure criterion. For the numerical analysis, the structural hot-spot stress as well as the effective notch stress approach have been applied. The latter allows the consideration of the weld shape which could partly explain differences in the observed and calculated failure behaviour. Another factor is the distribution of welding-induced residual stresses, which obviously affected the failure behaviour in the web frame corner as well. Insofar the investigations give a good insight into the strength behaviour of complex welded structures and into current problems and opportunities offered by numerical analyses.  相似文献   

7.
It is of continuing importance for ship structural design to establish a system to compute the growth behavior of fatigue cracks propagating in structural details. In the present paper, a simulation program is developed for multiple fatigue cracks propagating in a three-dimensional stiffened panel structure, where it can predict fatigue crack lives and paths by taking into account the interaction of multiple cracks, load shedding during crack propagation and welding residual stress. Various fatigue crack propagations in longitudinal stiffeners of ship structures are investigated by both the present simulation method and experiments. From these results, it is found that the crack propagation may considerably change, depending on the loading conditions, structural details and residual stress distributions. This means that one could possibly manage to avoid fatal damage of the skin-plate by properly designing the structural details. Furthermore, these results may imply a possibility to realize a rational fatigue crack management if one can estimate the fatigue crack-propagation behavior during the ship lifecycle. The present simulation program may offer a useful numerical tool for this purpose.  相似文献   

8.
本文考虑焊接残余应力的影响,给出包含裂纹萌生和裂纹扩展全过程的载人深潜器耐压球壳疲劳寿命预报方法,分别基于局部应力-应变法和能计及负应力比效应的裂纹扩展单一曲线模型预报了耐压球壳的工艺疲劳寿命和使用疲劳寿命,研究焊接残余应力大小对球壳疲劳寿命的影响。结果表明,忽略拉伸残余应力的影响将导致疲劳寿命预测结果偏于危险;耐压球壳整体受压时,拉伸残余应力使得球壳局部区域承受拉-压循环载荷,计算使用疲劳寿命过程中须考虑其影响;降低拉伸残余应力可有效提高耐压球壳的疲劳寿命。  相似文献   

9.
The problem with fatigue lifetime estimation of explosive cladded transition joints under random loading conditions has been described. The paper presents the fatigue test results performed for the random state of tension-compression under a generated spectrum according to the Pierson-Moskowitz model. The obtained spectrum has a non-Gaussian characteristic. The tested material consists out of a transition joint clad with four layers of aluminium alloy A5083, A1050, Titanium Grade 1 and steel Grade D. The material has been tested for the existence of residual stresses after the welding process with the hole drilling method. The welding process has been also simulated with ANSYS and the residual stresses have been generated for the Goldak volumetric distribution. The obtained values of residual stresses comprise to the values of real tests performed for the hole drilling method. The information about the residual stress values have been taken into account in the process of fatigue lifetime estimation in the form of non-zero mean stresses compensation inside the clad. The fatigue life has been calculated with the use of the frequency domain method. The Goodman mean stress compensation model has been used in the process of residual stress compensation. The non-gaussianity has been compensated with the use of the Bracessi formula. The obtained fatigue life assessment results have been compared with stand test results. The calculated results are within the scatter area of 3, but individual scatter values have been calculated for calculated series.  相似文献   

10.
Stress concentration and residual stress have a significant influence on fatigue life of welded joints. In order to reduce the stress concentration of welded joints, a mathematical design method of tensile triangles (MTT) based on bionics was applied to weld shape design. Accordingly, the stress concentration of various weld beads in the corner boxing welded joint and the fillet welded T-joint was dissected using our in-house FEM software JWRIAN. It was found that there existed a large stress concentration in the conventional welded joints, whereas those welded joints with elongated weld bead were accompanied by a lower stress concentration, especially for elongated weld bead with MTT design. Furthermore, among the weld shapes of the corner boxing fillet welded joint, the rectangle shape of weld bead had the minimum stress concentration factor (1.05). For the fillet welded T-joint with MTT design, the stress concentration of weld toe decreased dramatically with the increase of the index of designed shape, but there was a minor difference of stress concentration at weld root between the weld beads with MTT design. In addition, application of low transformation temperature (LTT) weld metal utilizing martensitic transformation to the fillet welded T-joints can produce compressive residual stress at weld toe.  相似文献   

11.
大型核电厚壁结构X射线衍射法残余应力测试   总被引:1,自引:0,他引:1  
采用X射线衍射法( XRD)对大型核电厚壁结构堆芯板端面、堆芯板与吊篮筒体环焊缝焊前焊后残余应力进行无损测量。研究堆芯板端面、环焊缝焊前焊后残余应力的分布情况及变化规律。结果表明:堆芯板焊前残余应力主要是机加工应力,且焊接过程对其残余应力影响不大;1#和2#堆芯板环焊缝轴向残余应力分布趋势明显,呈现焊缝为压应力,母材为拉应力;测试的环向应力在各区域分布不一致;焊接对远离焊缝区域的应力没有影响,远离焊缝区域呈现较大的加工应力。  相似文献   

12.
船舶作为一种大型焊接结构,其疲劳热点部位的应力应变场分布很复杂,要预报这些部位的裂纹疲劳扩展寿命,必须解决复杂场中裂纹的应力强度因子计算及其裂纹扩展方向问题.该文对船舶肘板处两种不同原因产生的裂纹的扩展路径、扩展速率进行了研究.裂纹扩展方向用第一主应力准则确定,在裂纹扩展方向上给定不同的裂纹增量,得到不同长度裂纹的复合裂纹等效应力强度因子,并拟合这些计算结果得出船舶肘板的应力强度因子计算式.结合裂纹扩展率单一曲线模型对肘板裂纹扩展寿命进行了预报,预报结果与实验结果符合得较好,说明所采用的方法可行.对建立船舶典型节点的裂纹扩展寿命预报方法有参考价值.  相似文献   

13.
对于承受交变载荷的焊接构件,焊接残余应力的存在对于结构的疲劳寿命影响巨大。由于焊接残余应力形成机理的复杂性,当交变载荷作用时,焊接残余应力的松弛演变具有不确定性,导致该领域的研究难度相当大。迄今为止,鲜有文献就交变载荷下的厚板焊接残余应力松弛行为进行深入报道。采用低周疲劳试验,利用X射线残余应力测试仪,对试件表面焊接残余应力的松弛演变行为进行追踪研究,通过在试件表面近焊缝区布置网状测点,采集测点的横向及纵向焊接残余应力进行数据拟合,在试验对比修正的基础上,最终建立焊接残余应力的松弛演变模型。结果表明:在交变载荷作用下,焊接残余应力会发生松弛,并且,应力松弛量的大小与交变载荷的特征值大小紧密相关。  相似文献   

14.
Welding residual stresses are one of the main factors influencing the engineering properties of welded structures, and should be taken into account during designing and manufacturing products such as ships, bridges, etc. Recently, both computational and experimental methods play a significant role for providing residual stresses. The contour method (CM) became one of the most powerful techniques that can provide measurement of residual stresses normal to a plane of interest. In this method a component is cut at any plane of interest. Displacements normal to the cut surface are measured and then processed. Using the Thermal–Elastic–Plastic Finite Element Method (TEP-FEM), residual stresses after welding can be predicted. As well as, the elastic FEM can be used to reproduce residual stresses from measured longitudinal displacements in the CM.The main objective of this paper is to evaluate the effectiveness of different low transformation temperature (LTT) weld wires using TEP-FEM and the CM. In the simulation part, a computational approach is developed to numerically simulate both of welding and the CM. In the TEP-FEM, phase transformation is considered for LTT welds, additionally volume change and variation of mechanical properties with temperature are considered. In the simulated CM, welded specimens to be measured are replaced by TEP-FE models. Then the procedure of the CM is examined before applying it to real measurements. The simulated CM successfully predicted how the CM would reconstruct the residual stresses if applied experimentally. In the experimental part, welding is conducted using conventional and various LTT weld wires. Longitudinal residual stresses produced due to welding are measured using the CM. The results of TEP-FE simulation and the CM show the effectiveness of the different LTT weld wires in introducing compressive stresses in the weld. It is also observed that the applied LTT weld wires, which have almost the same martensitic transformation start temperatures, do not show big difference in the induced compressive residual stresses in the weld metal.  相似文献   

15.
邓军林  杨平  马丽  钱祎 《船舶力学》2018,22(3):325-338
船舶结构的扩展断裂失效往往是低周疲劳破坏和累积递增塑性耦合作用的结果,疲劳裂纹的扩展就是裂纹尖端前缘材料刚度不断降低、延展性不断耗失而逐渐分离的过程。基于弹塑性断裂力学理论,文章在作者对常幅载荷下提出的考虑累积塑性损伤的低周疲劳裂纹扩展速率预测模型的基础上对具有单个过载峰的拉伸/压缩过载下的扩展行为进行了研究。通过低周疲劳裂纹扩展试验进一步验证了该预测模型能合理评估具有单个过载峰的拉伸/压缩过载下的低周疲劳裂纹扩展行为。  相似文献   

16.
研究表明在恶劣海洋环境中船体结构整体断裂破坏往往是低周疲劳破坏和累积塑性破坏的耦合结果。考虑这两者耦合作用的影响,评估船体结构的极限承载力更为实际。基于累积塑性和低周疲劳裂纹扩展,从理论上分析了平面内低周疲劳载荷下裂纹板的残余极限强度。经过一系列数值模拟,首先讨论低周疲劳裂纹扩展行为的影响,然后随着疲劳裂纹扩展的发展,主要讨论了初始变形,焊接残余应力,裂纹扩展长度,裂纹分布和裂纹板厚度对低周疲劳载荷下船体裂纹板极限强度的影响。  相似文献   

17.
Ultrasonic Peening has attracted recent attention as a fatigue strength improvement method. The main features of Ultrasonic Peening are generation of compressive residual stress and smoothing of weld toe radius. However, for ship structures, various loads act on the hull structure over a ship??s life, including the construction period, and the compressive stress field of structural members generated by Ultrasonic Peening may change. In order to verify the technique's benefits to ship structures, the influence of load history on the improvement effects on fatigue strength by Ultrasonic Peening needs to be clarified. In this paper, the improvement effects on fatigue strength by Ultrasonic Peening for welding joints were confirmed by experiments with several joint type specimens. In addition, fatigue tests modeling launching, when the stress conditions of a ship's structure changes significantly, were carried out in order to clarify the influence of load history in a ship??s life. Consequently, some cases that have the possibility of decreasing or increasing the improvement effects on fatigue strength by Ultrasonic Peening were clarified, and some efficient methods of Ultrasonic Peening for ship structures were suggested.  相似文献   

18.
In this paper, the effects of residual stresses on the ultimate strength of stiffened cylinders are numerically investigated with an emphasis on shakedown which might occur during the service of these structures. Residual stresses caused by two types of actions, namely, cold bending and welding, are simulated with simplified approaches in numerical analysis. Cold bending stresses are simulated by simulating cold rolling and elastic springback until the desired curvature for cylindrical shell is obtained. Welding is simulated by applying cooling down to a certain temperature on the elements adjacent to stiffener-shell joints to obtain weld-shrinkage with realistic magnitudes. Six small-scale externally pressurized ring-stiffened cylinder models are utilized to evaluate the appropriateness of the method for inclusion of welding residual stresses in numerical analysis by comparing the experimental and numerical results. Ultimate strength analyses are then performed for a reference ring-stiffened cylinder model under radial pressure and stringer-stiffened cylinder under axial loading. To assess the effect of shakedown, after applying cyclic compressive loading to the ring-stiffened cylinder model, the level of stress relief and the change in the ultimate strength are evaluated.  相似文献   

19.
Predicting fatigue crack growth after its detection during in-service inspection is necessary to prevent a loss of serviceability, such as the oil and/or water tightness of critical compartments. This paper focuses on the most typical fatigue cracks that start at the weld joint between a flat bar stiffener on a transverse web frame and the flange of a longitudinal stiffener on a bottom plate or inner bottom plate. An experiment is carried out to observe the fatigue crack propagation for two kinds of flat bars at the abovementioned connection. The experimental results, especially the surface crack growth on the flange (which dominates during the total fatigue life of the longitudinal stiffener), are compared with crack growth curves predicted using a few existing formulas. Based on the comparative study, a formula that shows the best agreement with the experiment results is selected. Weld toe magnification factors for the web stiffener are computed from the crack propagation rates measured in the experiment, and two equations for the magnification factors versus crack depth are developed for two types of web stiffeners. The selected existing formula and the proposed equations are applied to two connections at the inner bottom and side longitudinal bulkhead of an LNG carrier. The equivalent stress approach based on a long-term distribution is employed to avoid the complexity involved in dealing with the actual stress history. Using this prediction, the remaining service life until an oil or water leakage occurs at a tank boundary can be estimated when a fatigue crack at the connection is detected.  相似文献   

20.
变幅载荷作用下焊接接头疲劳寿命预测方法   总被引:8,自引:4,他引:4  
船舶与海洋结构物在其服役过程中受到波浪等载荷的交变作用而引起结构的疲劳损伤.检测结果表明船舶及海洋结构的疲劳热点部位大多数是在构件相互连接的焊缝焊趾处.因此,研究典型接头表面裂纹应力强度因子统一计算方法以及变幅载荷作用下表面裂纹扩展规律对船舶与海洋结构物的寿命预测是十分重要的.本文讨论了裂纹闭合及开口比的计算,在Newman有效应力强度因子计算方法的基础上,提出了考虑因素更全面的有效应力强度因子幅计算式以及变幅载荷作用下船舶与海洋结构物典型焊接接头疲劳裂纹扩展寿命预测模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号