首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
论述了现场实车试验、数值仿真计算和室内模型试验等高速铁路隧道气动效应的研究方法, 分析了隧道气动效应的影响因素, 系统研究了动车组通过隧道及交会条件下车体内和隧道内瞬变压力与洞口微气压波随速度的变化规律、缓冲结构的设置条件、隧道附加阻力的计算方法、隧道内辅助设施所承受的气动荷载要求以及长大隧道远程测试控制技术和隧道内精确交会控制方法。研究结果表明: 高速列车通过隧道引起的气动效应直接影响到列车运行的安全性、乘员舒适性以及隧道周边的环境, 是高速铁路隧道设计中必须解决的关键技术问题; 建议提出适合中国国情的隧道内复合型舒适度、微气压波标准, 开展多孔吸能材料、洞口缓冲结构、减压竖井、横通道设计等减缓措施研究。  相似文献   

2.
利用风洞试验、CFD方法及线路实车验证,比较分析某型列车三种不同型式的裙板方案对整车空气动力学阻力性能及转向架区域积雪结冰性能影响.研究发现:裙板的大小对列车阻力性能的影响与转向架区域积雪结冰性能的影响是相互矛盾,裙板越大列车整车阻力性能越优,而大裙板处存在较大的死角,加之安装大裙板时转向架区域空气流速降低,不利于排雪,容易导致雪在转向架及裙板死角处堆积,造成较多积雪,从而影响行车安全.应该综合考虑裙板对列车的空气动力学阻力性能与转向架区域积雪结冰性能的影响,选择折中的方案,最大限度的照顾列车的整车空气动力学阻力性能,又兼顾列车转向架积雪结冰性能.依此原则设计的小裙板作为高寒动车组裙板方案在实车中得到广泛应用,取得了理想效果.  相似文献   

3.
为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。  相似文献   

4.
强风中高速列车空气动力学性能   总被引:9,自引:0,他引:9  
基于三维定常不可压缩Navier-Stokes方程、k-ε两方程湍流模型, 采用有限体积法对速度为200 km·h-1的CRH-2动车组在强风环境下运行的空气动力学行为进行了数值模拟, 分析了偏航角对列车整车及其各部分的流场结构和气动力的影响, 研究了气动力的组成。研究发现: 列车的流场结构非常复杂, 侧风情况下列车的背风面区域和尾部区域都会产生漩涡, 漩涡的产生与从列车表面的脱离的位置随偏航角的变化而变化; 整车、头车、中间车和尾车的气动力大小以及组成均不相同; 压力场与侧力、升力沿列车纵向的变化情况基本相同, 且都比较复杂。分析结果表明: 压力主要对侧力和升力影响较大, 由于采用了流线型设计, 阻力主要来自空气的粘性力, 即摩擦力; 侧风情况下头车的侧力和倾覆力矩要明显大于其他部分, 此时头车的安全性降低。  相似文献   

5.
为探究在高速列车车顶安装升力翼后引起的列车周围流场剧变,以三车编组1∶10缩尺比某型CRH高速列车模型为研究对象,采用基于两方程湍流模型的改进型延迟分离涡模拟(IDDES)方法,对比分析了有无升力翼的2种高速列车时均和瞬时列车风的发展规律;利用涡旋识别方法探讨了尾迹区瞬时涡结构分布特征,通过比较尾迹区不同流向位置的列车风分布特征与尾流涡旋移动规律,验证了列车风速度峰值与尾涡非定常特性的相关性,采用频谱分析方法获得了尾迹区速度功率谱密度曲线。研究结果表明:升力翼的几何外形结构加剧了车身表面边界层分离,令列车顶部和侧表面边界层厚度增大;升力翼使列车风速度峰值增大,其中在轨侧和站台位置最大时均列车风速度分别增大了1.556和1.327倍,且相较原型列车第2个峰值位置延后;由于翼尖涡不断向下游发展和累积,升力翼列车尾流结构表现为大尺度涡对中夹杂着一对更为破碎的细小涡旋,相较原型列车,涡旋与地面之间的剪切作用更强,升力翼列车尾流时均列车风速度在展向分布上有所增大,但垂直分布上有所降低,并在水平面上出现更明显的剪切分离;升力翼列车尾迹中包含较多破碎的小尺度涡,进而影响了尾迹涡脱落频率,使之比原型列车具有更高的能量,且涡旋耗散速度更慢。  相似文献   

6.
基于三维定常不可压的黏性流场N-S及方程湍流模型,利用有限体积数值模拟方法分析计算出某型时速350 km/h高速列车在明线及特长双线隧道内运行时的局部流场结构及压力波分布情况。研究发现:流场分布结构复杂且不规律,整体趋势上列车靠近隧道的一侧所受静压大于靠近中心线的一侧所受静压,同时迎风侧压力波动现象较为明显,且两侧所受静压沿列车长度方向逐渐减小;隧道方面:列车侧与无车侧内轮廓所受静压沿列车长度方向逐渐增大,然后于列车头部位置骤降并逐渐趋于平缓下降,到背风侧列车尾部位置突增达到一个极大值,然后逐渐下降并趋于稳定,列车侧内轮廓所受静压沿列车长度方向在靠近列车头车司机室部位,压力波动现象较为明显,且迎风侧压力波动现象较背风侧更为突出,无车侧基本无压力波动现象产生,轮廓静压分布沿着隧道底部逐渐向隧道顶部基本保持稳定。  相似文献   

7.
为评价计算网格对明线列车空气动力学数值仿真计算结果的影响,基于计算流体力学,研究了计算网格对列车气动特性的不确定性. 首先根据3种不同尺寸的计算网格及其计算结果,提出了计算网格对列车气动力和表面压力不确定性的计算方法;其次以ICE2列车为研究对象,划分了3种不同尺寸的计算网格,数值仿真得到了列车气动力和典型截面的压力;最后研究了该列车头车气动力和典型截面压力的不确定性. 研究结果表明:数值仿真得到的气动侧力系数与试验数据的误差仅为0.31%;车身迎风侧表面压力的不确定性接近于0;车身表面压力不确定性较大的位置主要位于车体底部,其最大不确定度达到1.42;头车侧力系数的不确定度为0.002 6,而头车升力系数的不确定度为0.509 3.   相似文献   

8.
为研究强降雨对高速列车空气动力学性能的影响, 利用Euler-Lagrange方法建立了强降雨环境下高速列车空气动力学计算模型; 空气建模为连续相, 采用Euler方法描述, 雨滴建模为离散相, 采用Lagrange方法描述, 并采用相间耦合方法对降雨环境进行模拟; 分别开展列车气动性能计算及雨滴降落仿真, 并与试验数据进行对比, 验证计算方法的准确性; 数值仿真了强降雨环境下高速列车的流场结构和气动特性。计算结果表明: 随着降雨强度的增加, 在雨滴的冲击作用下, 流线型头型前端区域的正压逐渐增大, 流线型头型后端区域的负压逐渐减小, 从而导致头车气动阻力增大; 降雨强度对高速列车头车气动阻力系数的影响较为显著, 而对气动升力系数的影响较小; 与无降雨环境相比, 当降雨强度为100~500 mm·h-1时, 200 km·h-1车速下的气动阻力系数增加0.004 0~0.020 4, 气动阻力增加85~432 N, 增大率为2.64%~13.46%;300 km·h-1车速下的气动阻力系数增加0.002 7~0.013 7, 气动阻力增加129~652 N, 增大率为1.78%~9.05%;400 km·h-1车速下的气动阻力系数增加0.002 3~0.009 8, 气动阻力增加195~829 N, 增大率为1.52%~6.49%, 因此, 不同车速下, 气动阻力系数随着降雨强度的增加而增大, 且与降雨强度近似呈线性关系; 当车速为300 km·h-1, 降雨强度为100 mm·h-1, 雨滴粒径由2 mm增加为4 mm时, 气动阻力系数由0.152 0增大到0.154 9, 气动阻力增加138 N, 增大率为1.91%, 因此, 高速列车气动阻力系数随着雨滴粒径的增加而增大, 且与雨滴粒径近似呈线性关系。  相似文献   

9.
列车交会篷布气动力分析   总被引:2,自引:0,他引:2  
为解决目前一车苫盖2张货车篷布(简称X型篷布) 存在的严重兜风现象与货物湿损问题, 并检验新型篷布(简称D型篷布) 的使用效果, 基于不同装载与加固方案, 通过实车试验, 针对D型篷布与X型篷布在有绳网和无绳网12种情况下, 测试了列车交会压力波和货车蓬布绳索拉力。测试结果表明: 当80~120km·h-1速度下的货车与200~210km·h-1速度下的动车组交会时, 动车组上感受的最大压力波幅值仅为577Pa, 货车感受到的最大压力波幅值为715Pa; 绳索最大值为1055N, 出现在无网X型篷布的角绳上, 满足相关规定要求; 没有苫盖篷布绳网时, 2种篷布兜风现象均较严重, 同等速度下无绳网X型篷布逆向压缝篷布绳索拉力比顺向压缝的大40%左右; 篷布绳网在降低篷布绳索气动力中发挥了重要作用, 大部分工况下无绳网篷布绳索受到的气动力比有网的大50%~80%。可见, 在相同工况下, D型篷布比X型篷布使用性能优良。  相似文献   

10.
研究了中国高速列车气动减阻优化进展,总结了典型部件的压力分布特性与各部件在列车气动阻力中的贡献占比,评析了惰行试验、风洞试验与数值模拟3种列车气动阻力研究方法,论述了和谐号、复兴号等系列列车头型气动性能的差异,阐述了高速列车头型气动减阻优化方法与技术,梳理了转向架区域、车端连接处、受电弓及导流罩等局部不平顺区域的气动减阻措施,归纳了适用于高速列车的前沿减阻技术。研究结果表明:数值模拟和风洞试验各有优缺点,经过风洞试验有效验证的数值模拟是准确计算列车气动阻力的有效途径; 列车气动阻力中贡献占比的主要部件为头车、尾车、转向架、受电弓与车端连接处; 由于现有高速列车的高度流线化,头型优化较难实现大幅度的减阻,改善转向架区域裙板、设计全包外风挡与优化受电弓和导流罩外形是进一步减阻的有效措施; 减阻降噪、提升运行平稳性和舒适性等多目标优化是列车头型设计的发展趋势,通过直接寻优计算或者代理模型寻优计算能够提高优化效率与降低优化设计成本; 未来应重点研究高速列车的仿生表面微结构、吹吸气流动控制、等离子体减阻与涡流发生器减阻技术,实现中国高速列车的绿色、节能、高速化发展。  相似文献   

11.
介绍了以东风11型内燃机车牵引的准高速列车风洞模型试验,包括以韶山型电力机车作牵引的对比试验。分别对4种列车牵引编组方案进行了气动阻力,列车表面压力及列车会车时的空气压力测量,于不同工况下共测得数据180组。在对测试结果进行分析研究的基础上,对其空气动力性能作了客观评价并对存在问题提出了建议。  相似文献   

12.
采用低温风洞试验对比了中国高速列车HST、法国高速列车TGV和德国高速列车ICE3的气动性能; 基于EN 14067和TSI标准在铝质材料模型上测试了不同侧偏角下列车阻力、升力和倾覆力矩; 利用粒子图像测速技术测量了列车周围流场, 得到了高速列车与空气的相互作用机理和气动现象; 采用计算流体力学方法模拟了高速列车实际运行情况, 并与低温风洞试验流场测试结果进行了对比。研究结果表明: 0°~10°侧偏角下列车阻力系数绝对值从大到小依次为HST、ICE3、TGV, 侧偏角为0°时, 3种列车的阻力系数分别为0.223、0.166、0.140;0°~5°侧偏角下列车升力系数绝对值从大到小依次为TGV、ICE3、HST, 且数值均接近0, 其中ICE3、HST为正升力, 列车受压向轨面力, TGV为负升力, 列车受上浮力; 0°~5°侧偏角下列车倾覆力矩系数绝对值从大到小依次为TGV、HST、ICE3, 侧偏角为0°时, 3种列车倾覆力矩系数分别为0.021、0.019、0.011;HST高速列车由于头部双层造型设计, 在头部曲面过渡处出现流动分离, 增大了列车摩擦阻力和压差阻力, 导致列车阻力系数比TGV和ICE3偏大一些, 但阻力系数在高速列车头型设计技术要求限值0.25之内, 且升力和倾覆力矩性能较好, 列车具有良好的稳定性, 满足高速列车头型气动设计的工程需求。  相似文献   

13.
横风下车辆-轨道耦合动力学性能   总被引:2,自引:0,他引:2  
应用多体系统动力学理论, 建立了车辆-轨道耦合动力学模型, 利用新型显式积分法求解动力学方程组, 利用赫兹非线性弹性接触理论计算轮轨法向力, 利用沈氏理论计算轮轨蠕滑力, 编写了车辆-轨道耦合动力学计算程序, 研究了轨道结构对高速列车动力学性能的影响, 分析了不同横风环境下高速列车动力学性能和列车姿态。研究结果表明: 当列车运行速度为350 km·h-1, 横风速度为15 m·s-1时, 车体最大横向加速度为0.45 m·s-2, 车体最大垂向位移为24.5 mm, 车体向背风侧横移80.0 mm, 车体最大侧滚角为2.23°; 一位轮对的最大轮重减载率接近0.80, 二、四位轮对均向背风侧横移, 背风侧车轮易发生爬轨现象, 二位轮对的横向位移最大, 为7.4 mm。在横风下, 高速列车的运行安全性指标变差, 车体振动加速度变化不明显, 车体向背风侧横移。在所有轮对中, 二位轮对最危险。  相似文献   

14.
高速列车模型试验装置及相似特征分析   总被引:7,自引:0,他引:7  
为了解决高速列车进出隧道引起的空气动力学问题,基于对目前国内外高速列车模型试验研究现状的分析,建立了模型列车速度可达100m/s的压缩空气式高速列车模型试验系统,并导出了模型试验的相似准则.利用该试验系统对高速列车进出隧道产生的压缩波进行了测试,并将测试结果与数值模拟结果进行比较,验证了相似准则的正确性.  相似文献   

15.
以修正Karman风速谱为目标谱, 基于最小信息准则确定线性滤波法自回归模型的阶数, 采用线性滤波法和谐波叠加法模拟了高速列车随车移动点的脉动风速时间历程, 并验证了模拟结果的可靠性, 对比了2种方法模拟脉动风速均值、方差、幅频、相频等特征变量以及风速分布规律的差异, 并分析了2种方法的计算效率。分析结果表明: 采用2种方法得到的脉动风速功率谱密度均围绕目标谱波动; 脉动风速均值约为0, 由于随机数的使用, 使得脉动风速峰值在个别时间点存在差异, 且在低频区域得到的仿真谱差异可能超过50%;不同风向角下计算所得脉动风速均值的差异小于2%, 且脉动风速的分布规律几乎一致; 当列车运行速度为80m·s-1, 且距地面高度10m处平均风速为25m·s-1时, 2种方法得到的脉动风速峰值均值间的差异小于1%, 表明2种方法均适用于模拟高速列车随车移动点的脉动风速; 2种方法所得脉动风速幅值均随脉动风速频率的增大而减小, 相位在-π~π内波动, 脉动风速分布在-3~3m·s-1内的差异仅为0.48%;采用2种方法所得脉动风速点数满足高斯分布, 且高斯分布拟合系数最大差异为3.15%;采用线性滤波法模拟所得脉动风速波动比谐波叠加法大7.89%, 其稳定性劣于谐波叠加法; 采用线性滤波法的计算时间约为谐波叠加法的1/9, 其计算效率远高于谐波叠加法。  相似文献   

16.
提出了一种高速列车动模型试验装置的新型加速方法,以期获得均匀的动模型车加速度,避免其他加速方法存在的问题;介绍了该加速方法独特的组成结构和试验原理,并进行了相应的动力学分析、数值模拟和试验验证.分析表明:该新型加速方法结构简单、可控性强、动模型车试验段出口速度高、能有效保护车载测试设备,获得了预期的加速效果,可适用于高速列车动模型试验装置模拟列车进出隧道、列车交会、列车与周围环境之间相对运动等一系列的空气动力学试验.  相似文献   

17.
高速列车头部气动性能的模拟计算与试验   总被引:1,自引:0,他引:1  
为了研究高速列车的头形对列车整车的气动性能有着重要的影响,对一节半车编组列车分别进行了空气动力学仿真分析和风洞试验.采用有限体积法对列车头部周围流场进行区域离散,进行气动性能仿真分析,得到高速列车头车的气动特性参数.在满足几何相似的基础上,对一节半编组的列车模型进行风洞试验,获取头部的气动参数,并从模拟仿真分析结果与风洞试验结果对比分析中验证,两种方法能够相互补充,相互印证,为高速列车头形的研究总结出有效的研究途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号