首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
北盘江大桥主桥为(82.5+220+290+220+82.5)m双幅预应力混凝土空腹式连续刚构桥.该桥结构跨度较大,运营阶段受混凝土部分收缩徐变及合龙温度影响,主墩及次边墩墩顶水平位移较大,对桥墩结构受力较为不利,需在中跨及次边跨合龙前进行水平顶推施工,且2幅桥梁之间在主墩斜腿处存在平联连接,2幅桥梁合龙顶推施工相互影响,与常规2幅相互独立的桥梁顶推施工差异较大.为保证顶推施工中改善各墩的受力状态,以消除各墩墩顶水平位移为原则,分析成桥状态下墩顶位移,确定了合理的顶推量及顶推力.并对2幅独立合龙顶推、双幅同步合龙顶推方案中各主墩的扭转、合龙口标高及顶推量等参数进行对比分析,确定了双幅同步合龙顶推方案较为合理.  相似文献   

2.
为研究有无顶推力合龙对多跨连续刚构桥合龙施工的影响,以三圣特大桥为例,建立5跨连续刚构桥的有限元模型,分别计算施工、合龙温度、混凝土收缩徐变等工况下引起的墩顶水平位移,推导出该桥顶推力的计算公式并得到合理顶推力值,分析在有无顶推力作用下桥梁结构的位移和应力变化。结果表明,顶推力与桥墩的墩顶水平位移线性相关;墩高较高(H≥80 m)时,有无顶推合龙的桥梁都处于安全状态,但不顶推合龙技术能降低施工难度,缩短施工周期,经济效益更为显著。  相似文献   

3.
嘉绍大桥主航道桥为(70+200+5×428+200+70)m六塔七跨分幅式钢箱梁斜拉桥。为确保其顺利合龙,结合该桥六塔独柱(桥塔为弱柱结构)并设置竖向双排支座体系和跨中刚性铰等结构特点,按照结构运营状态达到设计理想状态为施工控制目标,采用有限元软件建立实体模型,对关键控制工况分别进行仿真分析,对其合龙工艺、合龙顺序进行研究。研究确定该桥按照无应力状态几何控制法进行顶推合龙施工的方案,7个合龙口按照边跨→中跨→次边跨→次中跨的合龙顺序进行逐次合龙,并对合龙过程中的顶推施工工艺、关键施工参数确定、主要控制手段及实施控制要点进行了阐述。实践证明,该合龙方案和合龙顺序高效、高精度地完成了该桥的顶推合龙施工。  相似文献   

4.
为研究大跨径混合梁斜拉桥中跨合龙施工技术,以主跨340 m的重庆高家花园轨道环线专用桥为工程背景,借助Midas/Civil2015有限元软件对其施工过程进行了仿真模拟,并对合龙顶推位移量和合龙顶推力的两个关键合龙参数的计算方法进行了系统研究。首先提出基于刚性支承连续梁法,对合龙前斜拉桥最大悬臂结构进行等效简化,利用结构温度作用位移公式计算出不同温差下的梁体伸缩量,进而确定出合龙顶推位移量,并将其与有限元软件计算值进行对比,吻合程度较高。又将现场监测的实测值与之对比,误差较小,验证了合龙顶推量数值计算方法的可靠性。其次,通过对影响主梁顶推各个因素进行分析,得出了顶推力计算公式,并利用影响矩阵和Matlab软件有效计算出不同合龙顶推位移量的顶推力数值,确定了两者变化关系。将现场监测的顶推力实测值与其对比,实测值呈台阶式增长关系,理论值呈线性增长关系,实测值均匀地分布在理论值两侧,一定程度上验证了顶推力数值计算方法的可行性。最后,介绍了缝接合龙法的现场施工过程,并依次从成桥后的斜拉索附加索力、主梁附加应力、主梁线形变化及主塔偏移方面对成桥状态进行了对比验证分析,成桥状态良好。  相似文献   

5.
由于多跨连续刚构合拢过程是结构体系转换过程,使得结构从悬臂施工时的静定结构转化为连续的超静定结构。同时,梁体合龙时桥梁的主墩会发生向内弯曲变形,多大的桥墩弯曲变形,会对结构的受力产生不利的影响,而且也会对结构造成结构在后期的运营中梁体预应力的松弛。对此,在连续刚构桥合龙时需要预先对桥墩进行水平顶推,顶推的水平位移太大会造成施工中桥墩墩底开裂,顶推位移太小会对成桥后的桥墩造成开裂。现以某客运专线4跨连续刚构桥为例,应用数值仿真模拟的方法,对采用不同的合龙顺序情况下,桥墩顶推水平位移进行研究探讨。其成果可为今后连续刚构施工提供相关的参数或经验。  相似文献   

6.
花都至东莞高速广园快速路跨线桥为(75+125+75) m矮墩混凝土连续刚构桥,上部结构为单箱单室直腹板变截面预应力混凝土箱梁,中跨采用顶推合龙。利用Midas/Civil软件建立三维空间有限元模型,进行顶推效应计算,分析顶推合龙对于施工预拱度的影响,以及顶推对主梁受力性能的改善情况。通过计算可知,顶推对主梁施工预拱度影响较为明显;通过施加顶推力,可以改善混凝土收缩徐变引起的主梁下挠现象,可以改善主梁及主墩的受力性能。同时研究顶推过程中顶推力与位移、应力之间的关系,提出矮墩连续刚构桥中跨合龙顶推过程控制方法,为同类型的桥梁顶推合龙施工控制提供了一定的参考。  相似文献   

7.
琅岐闽江大桥主桥为(60+90+150+680+150+90+60) m 七跨连续半飘浮体系双塔双索面斜拉桥,主梁为栓焊结构钢箱梁,采用悬臂拼装法施工,中跨合龙段长12 m ,合龙段自重约170 t 。为了使大桥能够高精度顺利安全合龙,且成桥后结构内力、线形状态达到预期目标状态,基于无应力状态法原理的控制思想,确定中跨采用双边吊梁、无劲性骨架锁定、顶推法进行合龙。采用 MIDAS Civil 2011对合龙关键工序进行详细计算分析,得到合龙顶推力、顶推位移限值等关键控制参数;分析了顶推过程中的索力、线形变化规律,以验证结构合龙安全可靠;分析得到合龙段无应力长度较小的改变对成桥目标状态影响较小。工程实践表明采用该方法进行合龙控制是可行的,桥梁合龙后内力状态与设计目标一致。  相似文献   

8.
为保证波形钢腹板刚构-连续组合体系桥的合龙精度,以(55+4×100+55) m波形钢腹板刚构-连续组合桥——文泰高速珊溪大桥为背景,采用MIDAS Civil软件建立该桥施工阶段有限元模型,分析不同合龙顺序和体系转换时机对桥梁结构位移及应力的影响。结果表明:合龙顺序和体系转换时机对主梁成桥应力影响较小,对主梁成桥竖向位移、主墩墩顶成桥水平位移影响显著;珊溪大桥采用“边跨→次边跨→中跨”的合龙顺序,并在中跨合龙后进行体系转换,有利于全桥线形控制、改善主墩受力状态。采用上述合龙顺序和体系转换时机,该桥次边跨及中跨合龙时的高差控制在10 mm以内;成桥线形实测值与理论值最大相差17 mm,该桥的合龙实施效果较好。  相似文献   

9.
《公路》2019,(11)
PC连续刚构桥为多次超静定结构,一般采用顶推合龙工艺,以消除成桥后的部分次内力。然而,山区PC连续刚构桥具有桥墩高、墩高差异大且曲线桥多的特点,采用顶推合龙,作业空间小、施工困难;墩高差异较大时,高墩顶推位移大、矮墩顶推位移小,内力调整效果差;曲线桥顶推时,桥墩不仅产生纵桥向位移,同时也产生横桥向位移,受力更不利。山区PC连续刚构桥墩较高,抗推刚度相对较小,次内力也相对较小,能否采用不顶推合龙。依托江习古高速公路袁家特大桥,通过有限元计算对比研究、科学测试和实桥应用等技术开发,提出了高墩大跨PC连续刚构墩高与新型合龙工艺的匹配关系,为今后山区高墩连续刚构桥的合龙提供技术支撑。  相似文献   

10.
厦漳跨海大桥北汊主桥为双塔双索面钢箱梁斜拉桥,主梁采用悬臂拼装施工,中跨合龙方案采用配切-顶推合龙技术:在合龙前对合龙口进行观测,并拟合出合龙口宽度~温度曲线,根据预测的合龙口宽度对合龙段下料,同时在塔梁临时锚固上对单侧主梁顶推和回移一较小位移.实践证明,该桥采用的配切-顶推合龙技术既能确保合龙段顺利吊入合龙口,又能达到理想的焊缝宽度,提高了合龙的可靠性,降低了结构安全风险.  相似文献   

11.
新紫洞大桥主桥为83m+150m+83m的连续刚构,而主墩较矮只有13.5m高。施工方案为:合拢中跨前利用千斤顶在每个腹板形心处向边跨方向顶推1500kN的力,顶推时对称逐级加载,每级加500kN,以实现矮墩的合理内力和变位,同时也保证各主要施工阶段0^#块的受力不超出规范允许值。  相似文献   

12.
以一座预应力混凝土连续刚构桥为工程背景,采用有限元软件桥梁博士建立模型,通过利用顶推力施加后墩顶位移比较和在最不利工况下应力变化的方法,证明了高温条件下合龙的可行性;通过边跨、中跨同时合龙阶段及正常使用阶段验算,证明了边、中跨同时合龙的可行性。  相似文献   

13.
V型刚构组合拱桥方案结构分析   总被引:1,自引:0,他引:1  
余华  沈艳峰 《中南公路工程》2006,31(3):91-93,111
衢江大桥主桥采用V型刚构组合拱桥的设计方案,主跨主梁于拱脚处断开,并且采用体外预应力束作为系杆的方法来降低结构的墩底水平推力.针对该方案进行了内力分析,稳定分析和结构自振特性分析,为设计提供依据,研究结果表明这种方案是可行的.  相似文献   

14.
为研究大跨径混合梁斜拉桥中跨合龙方案与关键技术,以主跨926 m的鄂东长江公路大桥为背景进行研究。综合考虑该桥结构受力与构造特点,通过温度、顶推力及结构局部承载力的分析,确定该桥采用加载合龙方案。合龙过程中实施了合龙口线形调整、塔梁临时约束解除与顶推、劲性骨架设置等关键技术,使该桥中跨合龙始终处于受控状态,合龙过程十分顺利,实现了高精度合龙。  相似文献   

15.
伦洲大桥主桥为100 m+2×170 m+100 m空腹式连续梁—刚构组合体系.主梁采用单箱双室截面,主梁上、下弦汇合段采用柔性中板方案;下弦设置顶板束,梁段根部下弦设置腹板下弯束,顶板悬臂浇筑束两两错开布置;上、下弦汇合前施加顶推力并设置临时固结;主墩为实体墩,中主墩固结,边主墩释放,边主墩横向设3排支座,墩顶设临时固结块.0号块、边跨现浇段及合龙段采用支架现浇,其他节段采用挂篮悬臂浇筑.分别采用MIDAS Civil 2010、ANSYS 10.0软件进行主桥总体及局部应力分析,计算结果表明:伦洲大桥各项指标均能满足规范要求,且有一定的安全储备.  相似文献   

16.
漭街渡大桥主桥设计跨径为116 m 220 m 116 m的超高墩大跨预应力混凝土连续刚构桥,其中主墩高168 m,水库正常蓄水后主墩将有166 m被淹没。重点介绍了大桥方案的设计构思、桥跨布置以及结构设计。  相似文献   

17.
安庆市勇进路大桥的主桥是采用跨径组合81 m+148 m+81 m=310 m的三跨变高度连续刚构桥,大桥整体线形呈平面“S弯”,达到“直曲有度,相得益彰”效果,主墩采用Y型墩造型,通过对大桥的总体设计、对主桥的主梁、主墩等结构设计与计算,可以达到在满足通航净空的前提下,有效减小主跨跨径、降低主墩处梁高、改善墩底截面受力,又能使整体造型典雅优美,使之能融入宽广湖面而具有自然意境,可为类似桥梁的设计提供相关经验和参考。  相似文献   

18.
马水河特大桥为(116+116)m的大跨度T形刚构桥。主梁采用变截面预应力混凝土箱梁,单箱单室直腹板,箱梁顶宽10.7 m,梁底缘按圆弧变化。主墩高108 m,墩身采用矩形空心高墩,墩顶不设实体段,与梁部按空间框架形式相接,桩基采用24-2.5 m钢筋混凝土钻孔桩,混凝土强度等级为C30,在墩底设置7.5 m高的导流堤。分别采用BSAS和ANSYS对全桥进行结构静力计算及空间静力和动力分析。分析结果表明:该桥静力、抗风、抗震、车桥动力响应验算结果均满足规范要求。该桥主墩墩身采用后倾式悬臂模板法施工,主梁采用对称悬臂浇筑法施工。  相似文献   

19.
郑州黄河公铁两用桥引桥首孔公路箱梁由于受地形影响无法通过1次横移实现箱梁架设。若先架设其他孔箱梁,后架设首孔箱梁,则由于首孔箱梁桥墩设计宽度较窄,将造成架桥机正常站位时,无法将首孔箱梁架设到设计位置,给首孔箱梁架设带来诸多困难。因此,分别对小箱梁纵移支架架设法,搭设平台法,中梁分次架设、边梁纵移就位法等方案进行深入分析和研究,经综合比较后选择中梁分次架设、边梁纵移就位法的架设方案,顺利地实现高空窄墩情况下首孔箱梁的架设。  相似文献   

20.
孙宗全  刘斌 《中南公路工程》2014,(2):232-237,250
依托某特大跨径连续刚构桥,对营运期间桥梁的线形、主墩的竖向位移、主墩的偏位、伸缩缝的变形进行了分析研究。首先,明确了特大跨连续刚构桥监测的内容和方法,进而用有限元软件 Midas Civil2012对桥梁变形相关理论值进行了计算。随后,现场实测了桥梁变形相关的数据。最后,将现场桥梁线形、主墩的竖向位移、主墩的偏位、伸缩缝变形的实测值与理论计算值进行了对比分析,得出本桥基本处于正常的工作状态这一结论。通过对特大跨径桥梁的分析,可为同类桥梁提供依据,具有较好的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号