首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 890 毫秒
1.
高速列车头车外形结构优化风洞试验研究   总被引:1,自引:0,他引:1  
我国最新一代高速列车为CRH380A,最高运营时速为350 km/h。现以500 km/h的高速列车为研究背景,对CRH380A高速列车头车外形结构进行优化,在中国空气动力研究与发展中心低速空气动力研究所的8 m×6 m风洞中对四种不同优化方案的高速列车头车的气动特性及其对有限编组列车气动性能的影响进行试验研究。试验结果表明:当侧偏角为0°时,在35~70 m/s的试验风速范围内,风速的变化对头型NEW-A的气动特性的影响很小;当侧偏角不变时,模型NEW-A的头车、中间车和尾车气动阻力最小,4种头型当中NEW-A头型的空气动力性能最好。  相似文献   

2.
我国对列车气动阻力的研究主要考虑列车的头型、断面形状和底部外形等方面,在受电弓减阻方面也主要是考虑受电弓的结构外形,然而对于受电弓残阻的风洞试验研究比较少.为了获得某高速列车的空气动力特性,并考察受电弓各种减阻措施的效果,在中国空气动力研究与发展中心低速空气动力研究所的8 m×6 m风洞中进行了列车模型的风洞试验,在风洞试验中通过在受电弓前部安装各种导流罩和风挡来测试其对受电弓阻力的影响.试验结果表明:受电弓的存在会对列车的气动阻力有约3.2%的增加;在头车尾部安装反向导流罩能有效的降低受电弓的气动阻力;在受电弓前郝安装风挡,这种风挡在侧偏角为0°时对受电弓的减阻有一定效果.  相似文献   

3.
为研究流线型头型对高速列车气动阻力性能的影响特性,利用B-Spline曲面建立高速列车流线型头型三维参数化模型,并提取5个头型设计变量。在此基础上,结合最优拉丁超立方设计和计算流体力学方法,研究高速列车流线型头型控制型线对高速列车气动阻力的影响特性,确定出关键控制型线。计算结果表明:随着流线型头型控制型线的变化,高速列车气动阻力发生明显改变,变化范围为3 183~3 509 N,相对变化量约为10.2%。最优设计点头型下的气动阻力较原始头型降低3.5%。对高速列车气动阻力影响最为显著的控制型线为纵向对称线,其次是车底最大轮廓线和水平最大轮廓线,而鼻尖高度控制线和中部辅助控制线对高速列车气动阻力的影响相对较小。  相似文献   

4.
为研究城市轨道列车气动特性以及底部部件对列车气动特性的影响,针对三节车模型进行简化,保有底部部件较高完整性,采用Realizablek-ε湍流模型预测列车周围流场。数值计算结果表明:列车气动阻力分布呈现出尾车阻力最大,占三节车总阻力的48%;中间车阻力最小,占总阻力的14%。其中转向架分别占头车、中间车和尾车总阻力的15.1%,56.4%和23.0%。车底设备分别占头车、中间车和尾车总阻力10.5%,10.3%和8.6%。因此对于头车、尾车采取减阻方案首先是采用流线型头型的方式减少流动分离现象。对于中间车减阻方法则要首先针对底部部件,采取密封舱的方式减少其产生的压差阻力。通过优化列车头型发现列车气动特性得到明显的改善,其中列车头车、中间车和尾车阻力分别为原始情况下的61.4%,70.1%和58.3%。在流线型外形基础上进一步稳定列车底部区域流场也有效改善了底部区域部件气动特性。  相似文献   

5.
高速列车头型拓扑结构对气动力的作用规律研究   总被引:1,自引:0,他引:1  
为了得到高速列车头型关键设计部位的拓扑结构对列车气动性能的作用规律,减少头型概念设计时的盲目性,本文以数值模拟和正交试验设计为分析工具,研究高速列车头型的长度、纵剖面型线、水平剖面型线、排障器外形、司机室玻璃形状和车体横截面形状对列车气动阻力和尾车气动升力的影响。将头型的6个设计部位均划分为5种不同的拓扑类型,研究各设计部位拓扑结构的变化对列车气动性能的影响,选取3个影响度最大的设计部位,通过有交互作用的正交表分析不同部位拓扑结构的耦合作用对列车气动性能的影响。得到列车头型各主要设计部位的拓扑结构对列车气动性能的作用规律,给出针对不同气动指标进行头型设计时的合理拓扑结构。  相似文献   

6.
基于可压缩流体的纳维—斯托克斯方程和RNG k-ε模型,以由头车、中间车和尾车3辆车编组的某高速列车1∶8风洞试验模型为研究对象,采用计算流体动力学软件(CFD),建立包括车体和走行部的三维非结构化列车表面离散网格模型和列车与隧道、列车与明线空间的组合计算网格模型,研究高速列车通过隧道时气动阻力的时变特性和规律.结果表明:高速列车在车尾刚进入隧道人口时其气动阻力达到最大值,为同样工况下明线运行时的2.5倍;高速列车完全进入隧道后,其气动阻力在一段时间内处于相对平稳期,为明线运行时的1.8倍;之后在隧道压力波的作用下,高速列车的气动阻力会发生准周期变化,变化幅度接近明线运行时的60%;在隧道长度大于高速列车长度的前提下,高速列车通过不同长度隧道时,其进入隧道时的气动阻力最大值均比较接近,而且在隧道内运行时的气动阻力变化特征和幅值也基本相同.  相似文献   

7.
采用基于SSTκ-ω的DDES数值模拟计算方法,对城际列车的气动阻力进行研究。分析城际列车的阻力分布及组成,根据列车流场变化对列车表面进行平顺化,主要优化车下设备、风挡和空调等部位,分析各种措施减阻效果。通过对结果的分析对比,得出了其变化规律:列车气动阻力主要由压差阻力组成,占总阻力的70%~90%;列车转向架、车下设备、受电弓及风挡连接处流场变化比较剧烈,需通过外形优化进行减阻。优化模型减阻效果显著,以设备舱的形式封装车下设备,总气动阻力下降3.7%;封装车下设备的同时采用外风挡,列车总气动阻力下降12.7%;增加2种不同角度的空调导流装置,总气动阻力分别下降16.3%和18.9%。  相似文献   

8.
西部风沙地区强风沙流对高速列车运行带来巨大安全隐患。高速列车的行驶线路一般分为平直地面、路堤及高架桥等,不同线路类型对高速列车气动特性的影响差异明显,尤其在强横风下,列车运行的流场特性更加复杂。为研究风沙环境下不同线路类型对高速列车横风气动特性的影响,采用数值模拟方法对列车运行速度250 km/h,横风风速分别为10,20,30,40,50 m/s,线路结构分别为平直地面、5 m路堤及10 m高架桥等不同工况下的列车气动性能进行仿真对比分析。计算结果表明:风沙环境下列车迎风侧正压区域及背风侧负压区域相比无沙环境均增大,其中,头车在平地工况下压力增幅最大,路堤及高架桥工况较小;风沙流中沙粒增加了列车的阻力,随着横风风速增大,头车阻力系数减小,尾车阻力系数增大,中间车阻力系数基本不变,列车侧向力系数均增大;在同一横风风速下,不同类型线路对头车的阻力系数和侧向力系数影响最大,其中,在路堤工况下列车稳定性较差,更容易发生侧翻危险。  相似文献   

9.
本文采用数值模拟方法对高速列车模型风洞试验中存在的地面效应问题进行研究。通过风洞试验验证了数值模拟方法的有效性,利用数值模拟比较了移动地面、静止地面和不同离地间隙工况下,1∶8缩比3节编组高速列车模型的气动力以及模型周围流场的变化规律。研究表明:移动地面较之于静止地面使模型气动阻力增加6.3%,升力减小130%;随着离地间隙的增大,高速列车模型阻力逐渐增大,升力也逐渐增大;不同地面工况下,3节车对气动力变化量的贡献有很大差别。鉴于地面效应会严重影响高速列车模型的气动特性,对风洞试验测量结果带来不可忽视的误差,有必要采用合理的试验手段对其进行消除。其中,采用移动地面法可以很好消除地面效应,而采用抬高模型法不能完全消除地面效应的影响。  相似文献   

10.
针对常温常导高速磁浮列车头型的几何特点,将其分为流线型和设备舱2个部分,采用改进的VMF参数化方法和曲面离散方法,分别进行参数化设计;对提取的12个设计参数,结合计算流体力学方法、支持向量机模型和多目标粒子群算法,以整车气动阻力系数和尾车气动升力系数为优化目标,以头车气动升力系数为约束条件,进行高速磁浮列车头型多目标气动优化设计,并进行设计参数的灵敏度分析;对优化外形进行工程化改进和风洞试验验证。结果表明:参数化设计方法能够利用较少的设计参数描述高速磁浮列车头型;减少计算量且提高优化效率的支持向量机模型的预测精度满足设计要求;头型长度是影响高速磁浮列车气动性能的关键设计参数,水平剖面型线对头尾车气动升力的影响较为显著;较原始外形,采用根据工程设计要求改进的优化外形后,整车气动阻力系数减小19.2%,头车和尾车气动升力系数分别减小24.8%和51.3%。  相似文献   

11.
对3~8辆编组列车以350km· h-1速度运行时,不同速度横风作用下的气动特性进行仿真研究,并建立列车的阻力系数与列车编组辆数之间的无量纲关系.研究结果表明:对3辆车编组列车的气动特性分析不能取代对其他编成辆数列车的几动特性分析;不同编成辆数列车阻力系数随着横风风速的增加而增大,3辆车编组列车的阻力系数不超过8辆车编组的列车的一半;列车的侧向力系数和倾覆力矩系数随着列车编成辆数的增加而减小;列车编成辆数对头车的阻力系数、升力系数、侧向力系数和倾覆力矩系数影响较小,但是对尾车的影响较大;头车的侧向力系数和倾覆力矩系数明显高于尾车和中间车,尾车的倾覆力矩系数最大值不超过0.4,而头车的最大可达0.7;由于头车的气动安全性比其他位置车辆的低,用头车的气动安全性评估整个列车的气动安全性会偏于保守,但合理、可行.  相似文献   

12.
"中华之星"高速列车综合空气动力性能研究   总被引:6,自引:0,他引:6  
介绍了我国即将投入运营的“中华之星”高速列车空气动力性能研究过程:数值计算、风洞试验、动模型试验、在线实车试验;对两种不同头形的高速列车交会压力波、列车空气阻力、列车表面压力分布、气动升力、横向气动力、列车对周围环境的影响等空气动力性能进行了研究;分析了动力车冷却风道一位百叶窗空气流向、流速。结果表明,“中华之星”高速列车具有良好的空气动力性能,能够满足安全运行的要求。  相似文献   

13.
国外高速列车最佳头尾部形状的研究   总被引:4,自引:0,他引:4  
张健 《机车电传动》2000,(2):16-18,35
针对国外利用以风洞模型模拟试验和以流场数值模拟计算为主的方法来寻找高速列车最佳的头尾部形状,使列车的综合气动性能最佳,从而有效地降低空气动力学现象对列车运行和周围环境的影响进行了探讨,介绍了国外在此方面取得的主要成果。  相似文献   

14.
强侧向风作用下的高速列车动力学性能研究   总被引:2,自引:0,他引:2  
宋洋  任尊松 《铁道车辆》2006,44(10):4-7
针对强侧向风下高速旅客列车运行安全性问题,利用SIMPACK软件建立了3车三维动力学仿真模型,根据已有的高速列车在侧向风下的空气动力学模拟计算得到的风载荷数据,分析了侧向风对列车在直道和曲线上动力学性能的影响。结果表明,列车的轮轨参数考察指标如轮轨横向力、脱轨系数及减载率等均显著增大,最大值均发生在头车。最后得出几种典型风速下直道和曲线上列车最高允许车速的参考值。  相似文献   

15.
建立了横风环境中高速列车运行于复线路堤上的三维空气动力学模型,开展了路堤高度和列车在复线路堤上的位置对高速列车气动性能影响的数值计算与对比分析。结果表明,路堤上列车周围的气流流速大于平地上的气流流速,导致路堤上列车气动性能较平地上恶劣;路堤高度和横风速度对高速列车在下风线上和上风线上气动性能的差异有重要影响;列车在下风线上运行比在上风线上运行更容易发生倾覆。  相似文献   

16.
姚曙光  许平 《铁道机车车辆》2007,27(3):33-34,69
基于上海TR08磁浮列车的头部外形,设计了4种国产流线型磁浮列车头部外形。采用大型流场计算软件CFX对5种不同头部外形列车的空气阻力、升力进行计算,并对5种外形的列车交会压力波进行了数值分析。通过对不同外形磁浮列车空气动力性能的分析,提出了国产化磁浮列车气动外形的流线型头部长度取6~7 m,采用单拱,并适当提高纵剖面轮廓线高度的设计原则。  相似文献   

17.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

18.
不同风向角和地面条件下的列车空气动力性能分析   总被引:1,自引:0,他引:1  
高速列车大都采用电动车组的方式,轴重越来越轻,在强横风中极有可能造成车辆的倾覆。而在不同风向角和地面条件下列车的气动性能也会发生变化。采用大型流场计算软件FLUENT6.0 对列车在不同风向角下的气动力系数进行了计算,分别对列车在平坦路面上、路堤上以及桥梁上3种情况进行了数值模拟。计算结果表明:头车在平地上受到的侧滚力矩较大,而中间车在桥梁上受到的侧滚力矩较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号