首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
依托贵州六盘水至威宁地区的国家高速公路工程,针对沿线不同类型的膨胀土,系统开展了室内与现场试验研究,结果表明:1)沿线膨胀土主要为中压缩性土,黏聚力为20 k Pa~40 k Pa,内摩擦角为5°~10°; 2)当含水率低于25%时,击实功可明显提高膨胀土的密实度和水稳性,反之则影响较小; 3)最佳含水率附近,在较小的含水率范围内CBR值变化较大,当击实功增加到一定程度,击实功继续增加,反而降低其CBR强度; 4)当路基含水率约36%、松铺厚度约30 cm时,若采用碾压膨胀土路基,碾压遍数控制在2~3遍时,路基压实度不低于85%; 5)若采用800 k N·m的夯击能单击2遍,夯沉量基本上趋于稳定,路基的压实度可达94. 8%。研究结果可为贵州高原地区的高速公路膨胀土的合理利用提供一定的参考。  相似文献   

2.
为研究高填方路堤分层压实过程中的超固结应力历史,对路基回填土分别开展室内击实和一维固结试验。通过采用两种自制击样装置以及标准重型击实钻芯取样等3种方式制备压实土样,研究击实功、击实冲量、含水率以及压实度等多种因素对路堤回填土超固结应力历史的影响。试验结果表明:相同压实度和含水率的压实土对应的应力历史不唯一,压实过程的单位面积击实冲量越大应力历史越大;当击实功和超固结形成路径都相同,压实土在最佳含水率时压实度最高,对应应力历史最大;当含水率相对最佳含水率上下浮动,压实土的应力历史会降低,且含水率越高,压实度对于应力历史的影响幅度越大。  相似文献   

3.
路基压实度是路基填筑过程中控制路基强度和稳定性的关键指标。本文以某高速公路黄土路基压实度为主要研究对象,研究了影响黄土路基压实度的主要因素。通过室内试验,分析了含水量、灰剂量和压实功对不同类型路基土体压实干密度的影响。通过现场试验,分析了实际施工过程中路基压实度的影响因素。研究结果表明,压实后土体的干密度随着含水量的增大而增大,超过最佳含水量后,压实干密度开始减小。灰剂量越大,土体达到最大干密度对应的最佳含水量越大。随着压实功的提高,土体的最大干密度增大,最佳含水量减小。实际施工过程中土体的干密度小于试验所得,土体的压实度收到压实工艺、含水量、灰剂量、松铺厚度等多方面的影响。  相似文献   

4.
为揭示福建省典型黏性土的压实性能,选取福建省3条不同地区在建高速公路的典型黏性土填料开展了大量击实试验和CBR试验,并分析黏性土的压实机理。结果表明:击实功的增加,将引起压实土样ρ_(dd)普遍增大0.16~0.21g/cm~3,对应的w_m普遍减小4.84%~7.5%。在压实曲线的湿润区,土样S_m为91.05%~97.12%,相同土样的S_m趋于相等;通过得到的S_m、w_m,对形状参数n、p进行拟合,得出n为5~8.78,p为5.03~10.96,不同土样具有与之相对应的压实曲线。土体不浸水时,不同击实功下的土体随其含水率的增大,CBR值减小幅度加大,当含水率处于湿润区,CBR值很接近,再增加土体击实功对增大CBR值的效果不明显;土样浸水时,在干燥区或湿润区,CBR值不随击实功的改变而改变,其浸水CBR值在最佳含水率w_(opt)±2%以内较大,在最佳含水率湿侧更为明显。  相似文献   

5.
对3种细粒土在3种击实功作用下的全压实曲线(含水量变化从零到土体趋于饱和),以及沿击实曲线的无侧限抗压强度、饱水与不饱水状态下的CBR强度特性进行了试验研究。试验研究表明:细粒土压实曲线具有两个重要的边界特征,即当含水量较小时,细粒土在一定击实功作用下的干密度值随含水量改变而变化的幅度很小,而当土体含水量较高时,随着含水量的增大,土体在不同击实功作用下的击实曲线均趋向合一,且土样的饱和度基本维持在某一定值;压实土样的最大干密度与最优含水量与击实功的常用对数分别呈线性递增和递减关系;沿全压实曲线,击实土样在最优含水量的干侧出现无侧限抗压强度峰值,且其强度值维持较高水平的含水量范围与塑限的大小有关;沿压实曲线,土样的不饱水CBR强度(单轴灌入强度)随含水量的增大而单调减小,当土样含水量较大时,重型击实功作用下土样的不饱水CBR强度反而低于采用中间和轻型击实功制备的土样的强度,而饱水CBR强度在最优含水量的湿侧的某一含水量范围内还呈递增趋势。实际工程中,应充分掌握和利用细粒土的这些压实和强度特性,制定出合理的压实控制指标和标准。  相似文献   

6.
增大击实功的路基压实试验研究   总被引:3,自引:2,他引:3  
压实度是路基填筑时控制路基强度和稳定性的关键指标。通过室内试验研究了击实功对路基压实度的影响:结果表明增大击实功,路基土的最大干密度和7d无侧限抗压强度都有显著提高,抗压强度最大增幅达到50%左右。因此增加路基土的密实度,可以明显地提高路基土的强度,延长路基的使用寿命。还通过现场试验研究了压实机具和碾压遍数对压实度的影响,并采用便携式落锤弯沉仪(PFWD)对压实后的路基强度进行检测。结果表明随碾压遍数的增加,压实度存在一定的增大趋势,但对不同材料的路基应选用不同的机具组合、碾压遍数等,以保证压实效果最佳。总之,由于目前重型压实机械的普遍使用,为更好地控制压实质量,适当提高路基压实标准势在必行。  相似文献   

7.
袁腾方  殷颖  刘小平 《公路工程》2009,34(6):104-106,111
分析了桂武高速碳酸盐红粘土高液限、高含水量、重粘性等基本工程特性,探讨了高液限红粘土压实中存在影响压实度因素最大空气体积率及最大含水量等问题。通过室内及现场试验研究了高液限红粘土压实度、压实功与CBR值之间的关系,提出了本路段高液限路基压实指标应以最佳含水量、最佳压实功及稠度控制参数,才能更有利于现场施工。  相似文献   

8.
文章对膨胀土石灰改良膨胀土初始含水量与干密度以及膨胀率对其加州承载比(CBR)值的影响规律,通过室内承载比试验,按照相关的试验规范的步骤进行CBR试验,分析了膨胀土和石灰改良膨胀土的CBR随着压实度变变化的基本规律。发现膨胀土的CBR值随其膨胀潜势等级、含水量、压实度变化的规律,CBR值对应的含水量大于最佳含水量,其差值随压实度的减小而减小.这些特征与膨胀土的固有膨胀特性以及膨胀潜势等级有关.膨胀土用于路堤填筑时,含水量宜按较最佳含水量稍大,并略低于塑限,干密度较最大干密度略低的标准控制,这才有利于路堤的长期稳定。  相似文献   

9.
低液限粉土路基填料工程特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对低液限粉土路基填料具有液限低、塑性指数小、强度和水稳定性差的特点,文中结合依托工程对低液限粉土进行了水稳定性试验、含水量对压实度影响试验、压实影响深度及碾压遍数试验。研究表明,击实功是保证低液限粉土路基水稳定性的关键因素;松铺厚度和碾压遍数应严格控制,实际施工以30 cm铺厚、碾压5~6遍为宜;由于低液限粉土在施工过程中易失水,以大于最佳含水量1%~2%压实可获得较好效果。  相似文献   

10.
低液限粉土击实过程中细颗粒之间的空隙并不能被更小的土颗粒所填充,无法形成太密实的填充和嵌挤结构,其路用性能较差,可通过换填、改良或者改变施工工艺处理后才能使用。但通过换填、改良的方式处理造价太高,也不利于环境保护。文章以华宁试验段为例,通过改变粉土路基碾压施工工艺,提高粉土路基的压实度,达到规范要求。低液限粉土路基现场碾压试验结果表明:松铺厚度越大,最终压实度越差,当松铺厚度在30cm左右时,最终压实效果最佳,松铺厚度为30cm时,采用碾压机械先强振、再弱振,压实遍数4~5遍能有效地提高低液限粉土路基的压实度;碾压沉降与压实度有很好的对应关系,单次碾压沉降越大,压实度增加幅度越大  相似文献   

11.
为了验证工业废渣复合材料对于膨胀土的稳定处理效果,通过化学组分分析,明确稳定膨胀土作用机理,采用击实试验、膨胀率试验和CBR试验,分析不同掺量稳定膨胀土的击实、膨胀和强度特性变化规律,按照膨胀率和CBR双控原则,确定稳定膨胀土最佳掺量为4.5%,并与相同掺量石灰稳定膨胀土性能进行对比。试验结果表明:随着工业废渣复合材料掺量增加,稳定膨胀土的膨胀率逐渐减小,CBR值逐渐增大。相同掺量下,工业废渣复合材料稳定膨胀土的CBR值高于石灰稳定土,能够满足膨胀土路基稳定处理要求,可以替代石灰用于膨胀土稳定处理。  相似文献   

12.
为了研究压实度对路基土抗剪强度参数和加州承载比(CBR)的影响,选取粉土、砂土和黏土三种类型的路基土,分别进行击实试验、不同压实度下的直接剪切试验和CBR试验。结果表明:压实度对路基土的内摩擦角、黏聚力和CBR值影响显著,且均具有较好的相关性。在此基础上,以塑性指数表征路基土的类型,最佳含水率和最大干密度表征路基土的物理状态,以压实度为主要影响因素,建立了路基土的抗剪强度参数和CBR值预估模型,建立的预估模型不仅精度较高,而且具有普遍适用性,可为公路路基的设计与施工提供参考。  相似文献   

13.
为了确定用高液限土直接填筑高速公路下路堤时压实度控制的下限值,选取海南高液限土,并以长沙黏土质砂为对比样,开展基本物理性质、电镜扫描、重型湿法击实、浸水CBR和非饱和固结试验;利用容量瓶法测定土样的吸附结合水含量;分析吸附结合水对高液限土击实特性、强度、水稳性和压缩性的影响;将吸附结合水视为土中固相的一部分,提出并论证高液限土压实度控制下限值计算式。研究结果表明:海南高液限土含有大量微孔隙和叠片状结构的黏土矿物,吸附结合水的能力远强于黏土质砂;吸附结合水含量与塑限密切相关,约为塑限的85.3%;吸附结合水作用使高液限土相对黏土质砂而言最佳含水率偏高,最大干密度偏低;当初始含水率低于吸附结合水含量时,高液限土CBR试件浸水后的膨胀量显著增大;吸附结合水对高液限土在高含水率状态下仍能保持一定CBR强度和低压缩性起到了积极作用,并可在路基运营期内始终保持稳定;采用高含水率的高液限土填筑下路堤时,其压实度控制下限值并非定值,而是与其吸附结合水含量和最佳含水率相关,前者越大于后者,压实度控制下限值越低。研究成果可为高液限土路基设计与施工及相关技术标准的制修订提供参考。  相似文献   

14.
采用S型复合固化剂对土石混填路基土进行化学加固试验,分析了S型复合固化剂的作用机理。通过土石混填路基土的重型击实试验、CBR试验、渗透性试验与固结试验,研究掺加S型复合固化剂或石灰对土石混填路基土性质的影响。结果表明:加入石灰或S型复合固化剂后,土石混填路基土的最优含水率降低、最大干密度提高,随着龄期的延长,加固土的CBR逐渐增加,且都能有效减小土石混填路基土的渗透系数,提高土石混填路基土的压缩性能。总体上,S型固化剂使用效果优于石灰,对土石混填路基土有很好的路用性能。  相似文献   

15.
通过对膨胀土掺加不同比例的中粗砂,开展液塑限试验和击实试验,研究了中粗砂改良膨胀土的液限、塑限和塑性指数变化特性以及击实特性,探讨中粗砂作为膨胀土路基改良剂的可行性。结果表明:随着中粗砂掺量的增加,膨胀土的液限、塑限和塑性指数逐渐降低;最大干密度随着中粗砂掺量的增加呈一元三次函数关系增大,最优含水量则呈一元二次函数关系逐渐减小,最大干密度随最优含水量的增大呈一元二次函数关系减小。  相似文献   

16.
为掌握细粒土路基的平衡密度状态及其变化原因,统计分析9条高速公路路床顶部的压实度和含水率检测资料,对3条黄泛区高速公路路基的压实度、含水率以及1条高速公路的路基模量进行全断面深度检测,并开展非饱和细粒土的湿化试验和弹性恢复试验。现场实测发现:在役路基除了实测含水率较最佳含水率有0~13.8%的增加外,相应的压实度出现了0~10%的线性衰减;其中,路床区、上路堤以及受水位波动影响较大的路基底部的压实度降低十分明显,而下路堤上部区域压实度基本维持不变甚至有所增大;路基压实度的变化与土的含水率密切相关。非饱和土三轴试验结果表明:土体湿化过程中,吸水导致体积膨胀和压实度衰减;当路床土吸湿至平衡湿度(含水率为18%)时,土体压实度降低5.07%。弹性恢复试验结果表明:压实路基土因变形恢复导致路基密度衰减;低含水率、高压实度和低上覆荷载条件下的弹性恢复较大,压实路床土弹性恢复导致的压实度降低值最大为0.5%;综合湿化和弹性恢复结果来看,两者占黄泛区路床区压实度衰减总量(约7%)的79.6%;此外,路基剪切模量的原位实测值较相同物理状态下的室内重塑土结果平均高出了60.64%,表明运营多年的高速公路路基土具有一定的结构性。因此,既有路基的评价应该同时考虑路基湿度增加、密度降低以及土体结构性等综合因素。  相似文献   

17.
石灰作为一种外加剂,用来改良膨胀土作为路基的填料,但石灰改良土击实曲线比较平缓,最优含水率较难确定,而且,在最优含水率附近压实是否就能达到较高的强度,也难以确定。针对该问题,对不同初始含水率下石灰改良膨胀土的无侧限抗压强度、CBR强度进行试验研究,并对干湿循环影响下的改良膨胀土CBR强度进行试验。结果表明:石灰改良膨胀土在初始填筑含水率稍大于击实曲线所反应的最优含水率情况下能够达到较高的强度,建议在实际施工中充分考虑初始含水率这一填筑条件对石灰改良土改良效果的影响。  相似文献   

18.
新建蒙巴萨至内罗毕铁路穿越膨胀土地段累计长约95 km。膨胀土含水率发生变化时胀缩变形大,强度低,不能直接应用于工程建设。以石灰和火山灰为改良剂,对蒙内铁路相关区段和蒙巴萨铁路枢纽路基工程膨胀土填料进行改良,选择不同的改良掺配比,通过室内试验分析最佳掺配比,并对改良效果进行分析。结果表明:2%石灰+10%火山灰掺配比改良效果和经济性最好,养护时间为10~15天,此时改良膨胀土黏聚力和压缩系数达到最优,改良后的膨胀土对干湿循环造成的裂隙发育抑制作用更为明显,对水的敏感性明显降低,渗透系数变小。  相似文献   

19.
叶集至信阳高速公路位于黄淮冲击平原和大别山区,路基主要为高液限粘土、膨胀土,即沿线取土场填土CBR值不能满足筑路要求,通过对路基上路床石灰改良土施工工艺、不同龄期压实度检测和不同龄期击实试验,研究了路基填土掺灰改性后干密度值存在随龄期变化的现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号