首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
控制策略开发作为混合动力汽车的核心技术之一,成为了国内外研究的热点。合理的控制策略和方法,对于驱动车辆在不同工况下行驶具有重要意义。本文通过使用ADVISOR软件对并联式混动汽车的控制策略进行再开发,提高工作模式切换的合理性,改善电动机对蓄电池组的充放电性能,提高车辆的续航能力,对于混动汽车的发展具有重要的意义。  相似文献   

2.
纯电动汽车作为新能源汽车行业发展的主要方向,在发展其核心技术中,动力系统的匹配对于发展纯电动汽车具有重要的意义,合理的动力系统匹配影响着汽车的动力性和续航里程等因素。根据纯电动汽车的整车参数和性能指标,计算选择动力系统的基本参数,并利用ADVISOR仿真软件进行仿真分析,为改进技术提供依据,验证了设计的有效性。  相似文献   

3.
为了缩短混合动力汽车开发时间,减少开发成本,本文以插电式并联混合动力汽车为研究对象,针对设计指标进行动力系统参数匹配以及使用AMESim软件搭建了整车模型,然后设计了基于门限值的能量管理策略并使用AMESim软件中的Signal,Control库进行搭建。之后对已搭建完成的车辆进行动力性经济性仿真分析,其中经济性分析是在NEDC工况下进行的,验证了本文所搭建策略和整车模型的正确性和可行性。  相似文献   

4.
混合动力整车油耗不仅仅取决于混合动力系统的优劣,与整车参数也有很大的关系,但混合动力汽车与传统汽车相比,整车参数对油耗的影响是有一定差别的,本文研究了一些主要的整车参数对混合动力汽车的油耗影响。基于功率分流式混合动力车辆的Amesim仿真模型,选取整车质量、轮胎滚动半径、滑行阻力曲线三个因素并利用正交表的方法分析其对油耗的影响,从而指导利用该模型进行功率分流式混合动力车辆的油耗分析和优化。研究表明,混合动力汽车由于制动能量回收的影响,整备质量对油耗的影响小于传统汽车;由于功率分流的能量控制策略,轮胎滚动半径对油耗的影响很小;滑行阻力对油耗的影响和传统汽车接近。  相似文献   

5.
为解决纯电动汽车存在的制动能量耗损及续航里程不足等问题,通过对行车能量流分析的基础上,提出一种制动能量回收及储能策略,并利用ADVISOR软件建立整车制动能量回收策略仿真模型。选取UDDS城市道路工况进行仿真,结果表明所建立的控制策略可以对制动能量进行回收和储存,对于提高纯电动汽车续航里程提供了理论基础。  相似文献   

6.
文章选取适当的柴油机增压器,利用计算法确定增压器增压参数,并通过AVL-BOOST软件建立柴油机增压模型,对发动机与涡轮增压器的匹配进行仿真,并且对匹配结果进行分析。结果表明,该软件进行增压器与柴油机的匹配仿真是比较好的,也说明了所选择的增压器是比较适合所匹配柴油机的。  相似文献   

7.
离合器作为汽车起重机动力传动系统中与发动机相连接的关键部件,对汽车起重机的动力传递有着至关重要的作用。本文通过介绍离合器选型设计过程中的计算公式并以某汽车起重机为例进行校核计算,为汽车起重机离合器的匹配提供参考。  相似文献   

8.
双电机驱动是提高电动车辆整车性能的有效方法,本文提出一种双电机耦合驱动系统的新构型;基于这种构型的特点,定义了双电机的4种驱动模式;依据车辆动力性要求计算出驱动系统各参数取值范围.根据双电机驱动系统的结构原理,提出基于门限值的模式切换控制策略;在Matlab/Simulink中搭建控制策略仿真模型,并与Cruise中整车模型进行联合仿真.仿真结果表明,这种新构型和控制策略在满足车辆动力性的前提下,可有效提高车辆的经济性.  相似文献   

9.
文章将车辆、道路作为整体系统的两个部分,把车辆简化为四自由度的1/2车辆模型,将道路离散为弹性多层体系的有限元模型,通过建立车辆道路耦合动力分析模型,推导出了系统的动力平衡方程组,并探讨了方程组的解耦方法,提出了反映车辆运行品质和道路设计参数的理论计算指标,为车路耦合动力分析的进一步研究提供了参考。  相似文献   

10.
混合动力汽车的节能减排的优势在于搭载了电动机,发动机与电机的合理搭配及其控制策略,是提高汽车经济性和动力性的关键。本文从混联式混合动力汽车的结构特点出发,分析了汽车运行与节能的关系,阐述了发动机与电机之间动能分配与能量回收控制策略,以及在混联式混合动力汽车上的具体运用。  相似文献   

11.
Reduction of greenhouse gas emission and fuel consumption as one of the main goals of automotive industry leading to the development hybrid vehicles. The objective of this paper is to investigate the energy management system and control strategies effect on fuel consumption, air pollution and performance of hybrid vehicles in various driving cycles. In order to simulate the hybrid vehicle, the combined feedback–feedforward architecture of the power-split hybrid electric vehicle based on Toyota Prius configuration is modeled, together with necessary dynamic features of subsystem or components in ADVISOR. Multi input fuzzy logic controller developed for energy management controller to improve the fuel economy of a power-split hybrid electric vehicle with contrast to conventional Toyota Prius Hybrid rule-based controller. Then, effects of battery’s initial state of charge, driving cycles and road grade investigated on hybrid vehicle performance to evaluate fuel consumption and pollution emissions. The simulation results represent the effectiveness and applicability of the proposed control strategy. Also, results indicate that proposed controller is reduced fuel consumption in real and modal driving cycles about 21% and 6% respectively.  相似文献   

12.
Literature has shown potentials of Connected/Cooperative Automated Vehicles (CAVs) in improving highway operations, especially on roadway capacity and flow stability. However, benefits were also shown to be negligible at low market penetration rates. This work develops a novel adaptive driving strategy for CAVs to stabilise heterogeneous vehicle strings by controlling one CAV under vehicle-to-infrastructure (V2I) communications. Assumed is a roadside system with V2I communications, which receives control parameters of the CAV in the string and estimates parameters imperfectly of non-connected automated vehicles. It determines the adaptive control parameters (e.g. desired time gap and feedback gains) of the CAV if a downstream disturbance is identified and sends them to the CAV. The CAV changes its behaviour based on the adaptive parameters commanded by the roadside system to suppress the disturbance.The proposed adaptive driving strategy is based on string stability analysis of heterogeneous vehicle strings. To this end, linearised vehicle dynamics model and control law are used in the controller parametrisation and Laplace transform of the speed and gap error dynamics in time domain to frequency domain enables the determination of sufficient string stability criteria of heterogeneous strings. The analytical string stability conditions give new insights into automated vehicular string stability properties in relation to the system properties of time delays and controller design parameters of feedback gains and desired time gap. It further allows the quantification of a stability margin, which is subsequently used to adapt the feedback control gains and desired time gap of the CAV to suppress the amplification of gap and speed errors through the string.Analytical results are verified via systematic simulation of both homogeneous and heterogeneous strings. Simulation demonstrates the predictive power of the analytical string stability conditions. The performance of the adaptive driving strategy under V2I cooperation is tested in simulation. Results show that even the estimation of control parameters of non-connected automated vehicles are imperfect and there is mismatch between the model used in analytical derivation and that in simulation, the proposed adaptive driving strategy suppresses disturbances in a wide range of situations.  相似文献   

13.
本文提出一种兼顾电池SOC限值方法的混合动力汽车多种群遗传模糊控制策略。引入模糊逻辑控制以增强整车控制系统鲁棒性、实时性;用多种群遗传算法对模糊变量隶属度函数进行优化,使在模糊逻辑控制下整车燃油消耗得到降低;使用电池SOC限值方法避免电池在SOC过低时继续放电。利用matlab平台联合advisor软件进行联合仿真实验,仿真结果表明多种群遗传模糊模糊控制策略能够比advisor软件默认的电机辅住控制策略燃油经济性提高6.96%的情况,SOC限值方法使电池工作在更加合理的SOC值区间范围内,有效保护电池。  相似文献   

14.
Sakai  Takanori  Bhavathrathan  B. K.  Alho  André  Hyodo  Tetsuro  Ben-Akiva  Moshe 《Transportation》2020,47(2):997-1025

Freight forecasting models have been significantly improved in recent years, especially in the field of goods vehicle behavior modeling. On the other hand, the improvements to commodity flow modeling, which provide inputs for goods vehicle simulations, were limited. Contributing to this component in urban freight modeling systems, we propose an error component logit mixture model for matching a receiver to a supplier that considers two-layers in supplier selection: distribution channels and specific suppliers. The distribution channel is an important element in freight modeling, as the type of distribution channel is relevant to various aspects of shipments and vehicle trips. The model is estimated using the data from the Tokyo Metropolitan Freight Survey. We demonstrate how typical establishment survey data (i.e. establishment and outbound shipment records) can be used to develop the model. The model captures the correlation structure of potential suppliers defined by business function and provides insights on the differences in the supplier choice by distribution channel. The reproducibility tests confirm the validity of the proposed approach, which is currently integrated into a metropolitan-scale agent-based freight modeling system, for practical use.

  相似文献   

15.
针对在不同工况下车辆行驶时对于主动悬架系统的性能需求,本文设计出一种可切换悬架工作模式的悬架控制策略,可以提高车辆在不同工况下行驶时的动力学性能。通过对控制策略进行建模仿真,结果得出相较于未进行模式切换的悬架,所设计的模式切换控制策略可以有效改善悬架工作时的性能,为后续控制参数的优化提供了研究基础。  相似文献   

16.
In this study a hydrogen powered fuel cell hybrid bus is optimized in terms of the powertrain components and in terms of the energy management strategy. Firstly the vehicle is optimized aiming to minimize the cost of its powertrain components, in an official driving cycle. The optimization variables in powertrain component design are different models and sizes of fuel cells, of electric motors and controllers, and batteries. After the component design, an energy management strategy (EMS) optimization is performed in the official driving cycle and in two real measured driving cycles, aiming to minimize the fuel consumption. The EMS optimization is based on the control of the battery’s state-of-charge. The real driving cycles are representative of bus driving in urban routes within Lisbon and Oporto Portuguese cities. A real-coded genetic algorithm is developed to perform the optimization, and linked with the vehicle simulation software ADVISOR. The trade-off between cost increase and fuel consumption reduction is discussed in the lifetime of the designed bus and compared to a conventional diesel bus. Although the cost of the optimized hybrid powertrain (62,230 €) achieves 9 times the cost of a conventional diesel bus, the improved efficiency of such powertrain achieved 36% and 34% of lower energy consumption for the real driving cycles, OportoDC and LisbonDC, which can originate savings of around 0.43 €/km and 0.37 €/km respectively. The optimization methodology presented in this work, aside being an offline method, demonstrated great improvements in performance and energy consumption in real driving cycles, and can be a great advantage in the design of a hybrid vehicle.  相似文献   

17.
The continuously variable hydromechanical transmission is an interesting solution for high power vehicles subject to frequent changes of speed, in which the comfort is a significant requirement.Despite their low average efficiency with respect to the mechanical transmissions, the hydromechanical transmissions allow to release the engine speed by the vehicle speed, and to open the possibility for the optimal control of the engine. It follows that the performance and emissions of the powertrain is heavily affected by the logic control.The aim of the paper is to investigate the emission reductions that can be obtained using a Power-Split transmission.Therefore, a hydromechanical transmission has been sized and tested on a 12-ton-city bus by using a one-dimensional model developed in an AMESim environment. Four different control strategies of the powertrain were applied to the model. The CUEDC-ME standard cycle for the characterization of emissions in heavy vehicles was used as a reference mission.The simulation results showed that the hydromechanical transmission reduces consumption or the emission levels with respect to the traditional transmission when managed according to appropriate control strategies. By means of emission values normalized with respect to the standard limits, it is possible to identify a control strategy that allows the reduction of emissions in every usage condition of the vehicle at the expense of a slight increase of consumption.The suggested procedure could help the manufacturer to satisfy the emission standard requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号