首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于砂带打磨钢轨时的接触状态,在单条砂带磨削角度给定的前提下,推导单条砂带磨削在钢轨横向截面上的材料去除深度,建立单条砂带材料去除的廓形模型和面积模型。为在多砂带联合磨削下包络形成钢轨目标廓形,在给定首条砂带的磨削角度后,根据当前钢轨表面的剩余高度并以打磨量最大为原则设定其他砂带的磨削角度,结合工艺参数生成钢轨养护时的多砂带联合磨削作业打磨模式。以打磨质量指数评价打磨质量,确定打磨次数,评价多砂带联合磨削作业打磨模式的打磨质量。结果表明:在砂带磨削工艺参数一定时,砂带的磨削能力与钢轨表面的曲率半径相关;以最大打磨深度对应的角度进行砂带布局的打磨模式能够很好地满足钢轨目标廓形的磨削需求。  相似文献   

2.
钢轨砂带打磨过程会生成大量磨削热,热量堆积易导致钢轨温度持续升高而影响打磨质量。为揭示打磨温度与工艺参数间关系,针对钢轨砂带打磨弹性-曲面接触特点,从瞬时点热源温度场理论出发,结合弹性赫兹接触理论建立了单接触轮及多接触轮的磨削温度数学模型。通过数值仿真分析了温度曲线沿时间、轨向位置的变化过程。将结果与现有有限元分析结果对比,验证了模型的有效性和适用性。进一步仿真分析结果表明,砂带打磨过程各点温度呈快速升温、缓慢降温趋势;提高列车打磨速度、增加磨头接触轮数量和接触轮间距能有效缓解热量累积;以60 kg/m钢轨为例,R13弧段为易烧伤区域,须依据理论模型制定适当的打磨工艺参数避免钢轨打磨时发生轨面发蓝、灼伤等二次损伤。  相似文献   

3.
为分析钢轨打磨时的摩擦、磨损及疲劳损伤,根据传热学理论,通过热机耦合方法,运用ABAQUS软件建立钢轨打磨有限元模型,以分析不同车速、打磨电机功率和打磨宽度对钢轨表面温度场和应力场的影响。钢轨与砂轮之间摩擦所产生的热量等效为一个移动热源,数值分析磨削过程中钢轨表面的温度、应力及应变状态。结果表明:钢轨打磨是一个快速升温、缓慢降温的过程;高温区温度场、等效应力场均呈以打磨轴线为中心、向四周扩散的椭圆形分布,且打磨高温区深度较浅,打磨产生的高温影响范围有限;钢轨表面最高温度随打磨车速度和打磨宽度的增加而减小,随打磨电机功率的增加而增加,仿真结果与实际打磨情况较为符合。  相似文献   

4.
《机车电传动》2021,(3):32-36
为了提高钢轨打磨效率,依据现有机床加工磨削原理与高速切削比磨削能计算方法,开展中低速钢轨打磨切削量精准控制技术应用研究。以标准60N钢轨轨头廓面打磨为例,首先提取廓面几何特征并将其分为4个打磨区域,根据钢轨预打磨廓面比磨削能与切削量的经验关系,建立钢轨廓面各打磨区域切削量的经验计算模型,并通过现场打磨测试验证该计算模型的可行性和精准性。结果表明,经过3次打磨计算,钢轨轨头廓面区域2的磨削面积总量最大为7.28 mm2,区域3的磨削面积总量最小为1.18 mm2,并且现场打磨测试的总切削量与理论计算的相对偏差分别为-3.57%和-4.24%,磨削总量结果基本吻合,达到钢轨磨削精度要求。  相似文献   

5.
华长权 《中国铁路》2014,(12):56-58
通过对钢轨打磨机理及打磨列车运行参数的分析,对影响钢轨打磨的各种要素(包括打磨列车作业运行速度、打磨电机分布、打磨电机磨削功率及施工条件和线路条件等)进行探索,结合磨削原理深入解析钢轨打磨磨削量与打磨参数的关系,在此基础上给出打磨功率参数在打磨作业中的求取步骤。研究成果从2012年6月—2014年10月在武汉大型养路机械运用检修段得到应用验证,打磨效果良好。  相似文献   

6.
为优化打磨参数,提高钢轨打磨车作业效率,以PGM-48及GMC-96X型打磨车为研究对象,运用金属磨削原理、正交试验分析及回归分析等理论,结合现场试验数据,建立钢轨打磨车作业过程中打磨速度、打磨功率与作业能力的回归数学模型。研究表明,打磨车打磨能力与打磨速度呈负相关,与打磨功率呈正相关;在正常条件下,打磨速度相比打磨功率对打磨车作业能力的影响更大;由于结构、能量转化效率等因素,不同型号打磨车在相同打磨参数下打磨能力不同;幂函数回归分析所得数学模型具有高度显著性,对打磨参数、打磨模式的确定具有实际指导意义。  相似文献   

7.
焦彬洋 《中国铁路》2023,(4):108-116
根据钢轨打磨磨削理论和钢轨实测廓形数据,建立单遍和多遍最优打磨方案设计模型,提出一种基于个性化模式库的钢轨廓形打磨方案设计方法,开发了智能化钢轨廓形打磨方案设计系统,并开展现场钢轨打磨作业应用。结果表明:将钢轨等效偏差指数作为最优打磨方案设计的优化目标函数,能够较好实现打磨后钢轨廓形逐步向目标廓形贴合;开发的智能化钢轨廓形打磨方案设计系统,能够根据现场实测钢轨廓形进行批量打磨方案设计,并能预测打磨后的钢轨廓形,可显著提升打磨方案设计效率;采用该打磨方案设计方法开展现场打磨作业,打磨后钢轨实测廓形与模拟廓形基本吻合,主要轮轨接触区域钢轨廓形与目标廓形较打磨前贴合程度明显提升,打磨后钢轨廓形GQI指标均达到优良等级且钢轨表面状态良好,能够较好地满足打磨作业要求。研究的相关成果可显著提升钢轨廓形打磨方案的准确性和设计效率,为铁路钢轨打磨作业提供直接、有效的指导。  相似文献   

8.
由于钢轨初始廓形及打磨工况的差异,现有方法难以准确预测多个砂轮组合打磨形成的钢轨打磨廓形。为此,提出一种基于响应面模型的钢轨打磨廓形预测方法。通过采集钢轨廓形的离散数据点,引入3次样条插值方法对打磨前的钢轨廓形进行数学描述。以打磨功率和砂轮倾角为设计变量,构建以打磨量为响应量的3阶响应面模型。基于钢轨打磨廓形成形机理,设计打磨廓形的数值计算方案,实现多个砂轮组合作用下的钢轨打磨廓形预测。通过工程实例,结合现行钢轨打磨验收标准,验证上述方法的准确性和可靠性。  相似文献   

9.
《机车电传动》2021,(3):46-54
以钢轨打磨控制策略为研究对象,通过建立钢轨磨削的三维坐标,分析钢轨磨削的基本理论和打磨压力的PID控制理论,得出了影响钢轨打磨效果的重要因素和关键参数,提出了钢轨打磨控制策略和方案,详细介绍了该控制策略的原理和流程。通过设计控制系统,并大量装车应用,测试了控制系统的运行特性。测试结果表明,基于该控制策略方案开发的自主打磨控制系统,能够实现平缓无冲击落轨,落点同步性好,整体打磨效果良好,具有很好的市场应用前景。  相似文献   

10.
基于热机耦合方法,运用有限元软件ABAQUS,建立钢轨打磨三维热弹性有限元模型,分析钢轨打磨过程中的温度、应力及应变。分析不同车速、不同砂轮转速及不同数量打磨磨头对钢轨表面温度的影响。结果表明;打磨过程是快速升温、缓慢降温的过程,打磨高温区的深度很浅,且高温区的温度场、等效应力场均呈椭圆状;钢轨表面温度随列车速度的增加而减小,随砂轮转速的增加而增加;钢轨表面温度随打磨磨头数量的增加而显著增加,打磨温度在250℃~500℃之间,符合实际情况。  相似文献   

11.
基于砂轮打磨钢轨的原理建立磨粒与钢轨接触的几何模型和受力模型,分析磨粒切削深度与打磨设定功率即钢轨打磨车电机输出功率的理论关系;依据磨粒分布及其突出高度的统计规律和磨粒切削深度与参与切削磨粒数目及电机输出功率的关系,仿真研究被测区域的钢轨打磨效果,并与试验结果进行对比。结果表明:切削深度的增加会引起参与切削磨粒数目的增加,而参与切削磨粒数目的增加亦会增加测试区域中打磨区域的重叠;受钢轨本身廓形曲率变化的影响,在电机输出功率相同而砂轮摆角不同时,钢轨的打磨结果也不相同;砂轮在钢轨轨顶部位的打磨会形成最宽的打磨带以及最大的打磨横断面面积,而轨肩部位的打磨带则较窄且打磨横断面面积较小;仿真与试验结果吻合,说明基于磨粒模型预测打磨砂轮的实际打磨性能是可行的。  相似文献   

12.
为探究货运线路中曲线区段磨耗钢轨的打磨方法对钢轨的服役寿命及列车运行安全的直接影响,针对曲线区段钢轨打磨廓形设计方法开展研究.设计多段圆弧和半径等多参变量的平滑设计方法,构建钢轨廓形描述模型,结合车辆-轨道耦合动力学及轮轨接触分析,设计不同权重系数,建立缓和曲线及恒定半径曲线段的磨耗钢轨打磨廓形的多目标函数,采用优化算...  相似文献   

13.
介绍钢轨打磨最佳策略制定原则和方法,根据GMC-96x型钢轨打磨车自身性能参数和钢轨打磨修理参数,结合大量实践经验和专家知识,以模拟专家的特性来解决不同程度磨损钢轨的打磨策略问题。通过分析研究钢轨打磨各控制参量的配比原则和演算关系,根据不同打磨条件制定钢轨打磨列车最佳打磨作业策略。  相似文献   

14.
根据钢轨砂带打磨作业原理,将钢轨与砂带的接触状态视为2个自由曲面接触;运用赫兹接触理论建立砂带与钢轨的接触模型,计算分析接触区域的形状、面积及其上的压力分布;将砂带上的磨粒简化为球顶圆锥模型,推导出磨粒切入深度与打磨压力间的数学关系,从单颗磨粒受力分析计算整个接触区域的切向力分布,进而建立钢轨砂带打磨功率的预测模型。在综合试验平台上进行36+号陶瓷磨料砂带打磨U71Mn钢轨圆环的试验,试验结果与预测模型的预测结果对比表明,打磨功率的预测值与试验值平均仅相差2.02%,证明了打磨功率预测模型的有效性和适用性。以60kg·m~(-1)钢轨砂带打磨为例,采用预测模型分析打磨功率与砂带速度配比对打磨宽度的影响。结果表明:打磨宽度虽由接触压力直接决定,但仍受打磨功率的约束,在同样打磨功率下,曲率半径为300mm弧段可调整的打磨宽度范围最广,80mm弧段次之,13mm弧段最窄。  相似文献   

15.
在郑西高铁钢轨打磨实践中,先期进行了钢轨全表面覆盖打磨,打磨后光带有些出现在非正常位置,部分地段钢轨的轨顶中部磨削较为困难。进行第二次钢轨打磨,修正了钢轨轮轨关系,打磨效果达到预定作业标准。  相似文献   

16.
针对某高速铁路动车组车体抖动问题,采集不同线路工况下车体振动加速度及平稳性数据、不同磨耗车轮踏面及打磨前后钢轨廓形,研究不同线路工况、车轮踏面和钢轨廓形对动车组车体振动特征影响,研究镟轮后不同时期车轮踏面和打磨前后钢轨廓形匹配下轮轨几何接触关系。同时,采用实际线路及动车组车辆参数,基于多体动力学软件Simpack建立包含实测车轮踏面和钢轨廓形的车辆-轨道耦合系统动力学模型,计算车轮镟修和钢轨打磨对车辆关键动力学指标的影响。研究结果表明:该高速铁路动车组车体抖动主要发生在隧道工况内,体现为垂向和横向的综合异常振动;随车轮踏面磨耗增加,实测车体振动加速度逐渐增大,轮轨接触关系逐渐恶化,与未廓形打磨钢轨匹配时尤为明显;钢轨打磨可以有效抑制等效锥度随车轮踏面磨耗增加的不断增大,有效改善轮轨接触关系。车轮镟修和钢轨廓形打磨均可降低等效锥度,有效整治高速铁路动车组车体抖动。  相似文献   

17.
以朔黄铁路为例,针对钢轨廓形打磨在打磨重载铁路过程中存在的问题,采用SIMPACK动力学仿真软件建立了实参数轮轨耦合动力学模型,对比分析了打磨前后轮轨作用力、轮轨磨耗和疲劳损伤,结果表明:打磨后轮轨关系改善,轮轨作用力明显减小,曲线上股钢轨侧磨和上下股轨顶疲劳损伤发展得到了有效抑制。  相似文献   

18.
对影响钢轨打磨车作业效率的主要因素进行分析,然后选取有代表性的钢轨打磨车作为目标车,考虑比磨削能,提出目标车的打磨面积公式,并与现场实测数据相结合,确定目标车的工作能力。在此基础上,根据试验得出的同类别其他打磨车与目标车的相应比值,即可得出该打磨车的工作能力参数,确定该打磨车的工作效率。该方法经维护单位现场试用,效果显著,打磨效率和质量均得到有效提升。  相似文献   

19.
考虑到钢轨打磨列车磨石对60kg/m钢轨轨头不同区域打磨能力的差异,建立轨头不同弧段打磨量与打磨功率的线性关系,采用三次样条曲线对钢轨轨头型面进行精确拟合;针对GMC-96打磨列车,考虑到轨头不同弧段对打磨精度的影响、轨头各个区域打磨面积不同,采用MATLAB编程优化得到预打磨磨石的最终排布角度;基于打磨深度一致性提出磨石打磨功率的制定方法,设计较优的钢轨预打磨模式;根据磨石角度及打磨面积确定轨头上每个磨石的具体位置,获得钢轨打磨后型面。基于打磨前后钢轨型面的对比分析,提出评价钢轨打磨质量的方法;磨石打磨功率能否自由设定对钢轨打磨深度一致性有重要影响。  相似文献   

20.
根据地铁曲线地段钢轨打磨前后实测廓形建立了实参数动力学模型并进行仿真计算,结合现场实测数据,对打磨效果进行了量化分析。研究表明,钢轨打磨后车体横向和垂向振动加速度有效值相对打磨前分别降低了7%、2%,从而提高了曲线地段地铁车辆运行的平稳性;钢轨廓形打磨可以使脱轨系数降低5%~30%,横向蠕滑力减小5%~40%,磨耗指数降低10%~50%,从而提高了车辆运行的安全性,降低了钢轨表面病害发生率和磨耗速率。通过打磨后现场观测发现,打磨区段钢轨垂磨速率相对非打磨区段降低了30%~40%,表明钢轨廓形打磨可以有效降低钢轨磨耗速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号