首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 916 毫秒
1.
弦测是轨道波磨不平顺测量的重要方法之一,但理论的缺陷使其无法同时提高复原精度与计算效率。针对这一问题,根据工程中轨道波磨不平顺的测量需求,提出基于ZFFT(ZOOM-FFT)的高精度弦测逆滤波算法。通过复调制将感兴趣的频段平移至零频点,去除高频部分后重排、补偿得到复信号,对该复信号进行选择性共轭扩展重构,再利用傅里叶反变换逆滤波得到轨道波磨不平顺测量值。理论仿真和线路实测表明,该方法能够在时间消耗较少的情况下提高测量精度,适合工程应用。  相似文献   

2.
弦测法是目前国内外使用最普遍的轨道不平顺测评方法之一。本文采用滤波模型描述弦测法对轨道不平顺的测评过程,借助频率采样方法构造逆滤波器实现轨道不平顺波形的复原,进一步定义滤波器等效长度和误差放大系数,对不同滤波器设计参数的误差影响进行分析,发现截止波长与采样步长的增加将导致误差快速积累;滤波器等效长度越大,波长的截断效果越明显,滤波效果越好。提出轨道不平顺测评过程中滤波参数的优化思路:一是采用更小的采样步长提高测评精度,二是采用更高的滤波器阶数优化滤波效果。以一段1km长的高速铁路轨道区段为例,根据逆滤波器设计方法,实现其轨道不平顺的复原,检测精度为0.01mm时测评误差在1~50m波长范围不超过0.84mm。  相似文献   

3.
车轮踏面的擦伤、磨损等缺陷严重影响车辆与轨道设施的安全和使用寿命。使用小波分析,对列车运行中踏面与轨道产生的振动检测数据进行算法研究处理,数据处理中采用小波包分解重构的方法对信号滤波,利用直方图的特性得到擦伤信号的阈值。  相似文献   

4.
文章从空域和频域两个角度讨论了等弦测量法对轨道不平顺测量结果滤波特性的影响,这种滤波特性是指轨道不平顺的长波长成分被极大地衰减,短波长成分则随波长变化起伏振荡。文章将弦测法的结果与轨道检查车的拟空间曲线输出结果进行了对比。  相似文献   

5.
通过介绍轨道几何静态检测的绝对测量型、相对测量型轨道检查小车以及动态检测惯性基准法的基本原理,分析单波不平顺的弦测输出、仿真弦测法的畸变影响,得出应采用大于轨道不平顺波长的弦长进行测量以减小弦测法幅值畸变的结论。将轨道几何的动态空间曲线转化为轨道几何动态弦测值,同时按轨道几何静态空间里程对轨道静态空间坐标进行最优化筛选,输出轨道几何静态弦测值,并将轨道几何动静态弦测值统一为10 m弦长、20 m弦长的弦测输出。对比轨道几何动静态弦测输出,结果表明动静态检测数据一致性较好,二者偏差95%,分位数小于1 mm,相对于轨道几何静态检测,动态检测无需人工设站,粗大误差小。  相似文献   

6.
原采用的“加速度峰值评价法”因踏面损伤冲击波形与钢轨共振波形重叠而导致踏面损伤检测结果与实际损伤有较大误差,为了提高检测精度,在原检测法基础上开发成功了“频率特性修正处理法”和“实效值评价法”,在测定加速度峰值的基础上经频率特性修正处理和实效值评价,使检测精度得到显著提高,从而可以对各种车轮踏面损伤进行自动测定,根据上述原理制成的踏面损伤检测装置由加速度检测器,模拟滤波回路,频率特性修正回路,实效值计算回路,最大值检测回路,计算机及数据库组成,现已投入实际应用。  相似文献   

7.
弦测法是测量轨道不平顺的一种基本方法,原理简单,使用方便,高效迅捷。传统观点是直接将弦测值作为轨道不平顺的近似描述,这会不可避免地因基准线变动而产生较大误差。针对该问题建立了一个描述中点弦测法本质的数学模型,分析了轨道不平顺与其弦测值之间的关系,构造了一种计算轨道不平顺精确值的迭代算法与快速算法,并采用数值仿真对弦测过程进行模拟。结果显示:迭代算法总体误差较小,传递函数较好,但由于迭代次数等原因会产生端点误差;快速算法以牺牲计算内存为代价能达到较高精度,绝对误差在1μm以内,传递函数效果极好,从而证明了所建立的数学模型的正确性与计算结果的精确性。  相似文献   

8.
针对中低速磁浮F轨轨道不平顺检测问题,提出基于机器视觉测量技术的中点弦测方法。由一组激光摄像式传感器检测轨道轮廓,进行图像处理、特征点提取以及世界坐标系转换后,计算得到轨道不平顺正矢值,通过"以小推大"、差值方法得到不同弦长的不平顺值,并为长沙磁浮快线研制了MTDS-1型车载非接触式中低速磁浮F轨轨道动态检测装置。选取株洲电力机车有限公司的磁浮交通系统中心试验线为试验地点,测试结果表明:在20 km/h和25 km/h的速度下测得的4 m弦和10 m弦轨道不平顺满足精度要求,验证了轨道不平顺检测数据的一致性,该检测方法能实现中低速磁浮轨道不平顺的准确测量,检测结果不受列车运行速度变化的影响。  相似文献   

9.
结合国内外轨道刚度评价方法和加载车检测数据的统计分析结果,提出利用轨道刚度幅值和标准差来评价轨道刚度,其中轨道刚度的合理幅值根据部件刚度计算得到,轨道刚度标准差合理值通过统计分析得到.据此得出武汉—广州高速铁路轨道整体刚度合理值为60~140 kN/mm,轨道刚度标准差合理值不大于10 kN/mm.利用加载车双弦弦测法...  相似文献   

10.
现有高速铁路轨道长波不平顺静态检测主要采用矢距差法或简化矢距差法,存在与检测起点相关、含有里程相位差、基础变形时检测幅值偏大、与车体振动加速度匹配性较差等缺点。利用中点弦测法对轨道长波不平顺进行静态检测,通过对中点弦测法不同测弦长度有效测量波长范围和列车敏感波长分析,采用60 m测弦长度的中点弦测法最适合时速300~350 km运营期高速铁路;利用车辆-轨道动力学仿真分析和最小二乘法拟合相结合方法,提出运营期高速铁路300及350 km·h^-1速度下的轨道长波高低不平顺控制标准,并进行实例验证。结果表明:60 m弦中点弦测法既可保证轨道长波不平顺检测的准确性,又能很好地体现车体振动响应;时速300 km运营期高速铁路轨道长波高低不平顺3级控制标准建议值分别为9,15,21 mm;时速350 km分别为7,11,15 mm。  相似文献   

11.
在分析桥梁变形与轨道变形的映射关系基础上,从轨道平顺性与车体振动加速度的相关关系出发,确定高速铁路轨道长波不平顺采用60 m中点弦测值评价且有效管理截止波长为200 m,通过实测数据的统计分析建立轨道不平顺60 m中点弦测值与车体振动加速度的关系式,据此提出在荷载组合作用下高速铁路大跨度桥梁上车体振动加速度简化分析方法。分析荷载组合下大跨度桥梁变形引起的车体振动加速度时,对于设计阶段,将荷载组合下的桥梁理论变形曲线经200 m高通滤波后计算60 m中点弦测值;对于建成阶段,将桥上实测轨道不平顺消除轨道自身随机不平顺后的轨道线形作为桥梁变形曲线,再经200 m高通滤波后计算60 m中点弦测值,并代入其与车体振动加速度的关系式,得到桥梁变形引起的车体振动加速度。以某长江大桥为例对该方法进行验证。结果表明:采用该方法和车辆-轨道耦合分析方法得到的大跨度桥梁变形引起的车体振动加速度分别为0.39和0.35 m·s-2,基本一致,验证了该方法在大跨度桥梁上的适用性,以及对大跨度桥梁长波不平顺进行200 m高通滤波的必要性与合理性。  相似文献   

12.
铁路拱桥桥面过大变形将危及列车行驶和桥梁结构的安全,但已有关于拱桥变形限值标准及评判依据的研究较为少见。以某上承式拱桥为研究对象,建立桥梁全桥有限元模型并进行车桥耦合振动分析,研究温度及不同倍数徐变引起的桥面变形对列车动力响应的影响,对比分析弦测法弦长与列车在轨道和上承式拱桥上运行的动力响应间的对应关系。结果表明:仅考虑轨道不平顺激励时,30~50 m弦测法能够较好地反映高速列车的加速度响应的变化规律;上承式拱桥徐变倍数为1.6时,车辆竖向加速度响应超限;仅轨道不平顺作用下列车竖向加速度卓越频率约为1 Hz,运行在上承式拱桥上时的卓越频率在1~2 Hz,说明影响振动的波长范围由长波向中长波扩展;弦测法用于上承式拱桥时,采用20~30 m弦长;上承式拱桥温度及徐变极限变形20,25,30 m弦测矢量值为3.8,4.3,5.3 mm,对应的限值可采用3.5,4.0,5.0 mm。  相似文献   

13.
潘超 《中国铁路》2013,(3):55-57
针对轨道不平顺波形分布的随机性和复杂性,研究具有机械滤波功能的新型轨道不平顺波形检测系统.阐述新型轨道不平顺波形检测系统的轨道长波长、短波长的检测原理和轨道不平顺波形的复原方法,以及结构组成及工作原理,并对试验检测数据的重复性、轨道不平顺波形与弦测值之间的关系和轨道不平顺波形复原进行分析;通过现场试验,复原出轨道真实不平顺波形,验证其稳定性、可靠性及检测精度.  相似文献   

14.
为分析评估超大跨度斜拉-悬索协作体系桥上线路空间线形和轨道几何形位特征,以某超大跨度协作体系跨海大桥为例,通过数值分析从线形参数、虚拟中点弦测和列车动力学评价等角度对桥上轨道几何状态进行分析。研究结论如下:(1)对设计状态各工况下的梁面变形进行拟合和线路参数分析,均满足相关规范要求,且温度变化引起的桥梁竖向位移较为显著,整体降温工况下跨中轨面高程增加,跨中纵断面竖曲线曲率增加;(2)40 m中点弦测法计算得到轨向弦测幅值较小,高低最大弦测幅值为21.93 mm,对应垂向加速度为0.199g,仍留有一定的安全余量;(3)列车行为动力学评估得到未被平衡离心加速度满足舒适度控制标准及相关规范,且离心加速度最大值主要集中在边跨桥墩附近,同时,桥塔附近也存在离心加速度极大值,运维部门需关注;(4)需加强轨道不平顺对列车运行的影响研究,提出适合高速铁路大跨度桥梁的轨道静态平顺性能控制指标。  相似文献   

15.
大跨度铁路桥梁在复杂环境下的大变形特点使得矢距差法不再适用于桥上轨道线形验收工作。为了解决400 km/h大跨度铁路桥梁轨道长波不平顺验收难题,首先根据成渝中线2座大跨度铁路桥梁特征,分析裕溪河特大桥与赣江特大桥对车体加速度的影响特征及综合检测列车的敏感波长,结合现有标准给出基于中点弦测法的桥上轨道静态验收策略。然后依据车辆—轨道耦合动力学理论,构建车辆多刚体模型和CRTSⅢ板式无砟轨道有限元模型,系统开展构造余弦波不平顺和实测不平顺作为轮轨激励条件下的动力仿真计算,并考虑桥上纵断面的影响,基于车体振动加速度和舒适性指标给出了400 km/h高速铁路大跨度桥梁轨道静态长波不平顺验收标准。最后通过裕溪河特大桥轨道静动态不平顺和中国高速铁路无砟轨道谱进行了验证。研究结果表明:1) CR450AF列车在400 km/h下车体沉浮运动的敏感波长为163 m,建议400 km/h高速铁路大跨度桥梁轨道静态长波不平顺采用60 m中点弦测法进行评价;2)桥上轨道静态高低长波不平顺60 m中点弦测验收值不应大于6 mm,轨向长波不平顺60 m中点弦测验收值不应大于4 mm;3)大跨度桥上轨道静态长波轨...  相似文献   

16.
连续刚构桥随着跨度增加,其收缩徐变、温度等引起的桥面变形随之增加,导致轨道长波不平顺加剧,进而可能对列车走行性产生不利影响。以一座试设计主跨250 m高速铁路连续刚构桥为研究对象,建立有限元模型,依据规范检算桥梁的强度和刚度,同时计算由于混凝土收缩徐变、温度效应等引起的桥面附加变形。采用“车-线-桥”动力仿真软件分析由于桥面附加变形导致的轨道长波不平顺对列车动力响应的影响。选用中点弦测法作为评价指标,通过相关性分析选出最优弦测长度,最后计算出最优弦长下连续刚构的桥面变形和等效不平顺限值。研究结果表明:横、竖向桥面附加变形均出现在桥梁的跨中截面;当附加变形增加到1.9倍,列车以速度350 km/h通过连续刚构时,车辆的竖向加速度首先达到限值1.3 m/s2;采用弦长为60 m的中点弦测法与车辆响应匹配性最好,适用于评价连续刚构的长波不平顺;连续刚构的桥面附加变形和等效不平顺60 m弦中点弦测值分别为7.2 mm和14.5 mm,对应限值建议分别为7 mm和14 mm。  相似文献   

17.
板式轨道填充层作为轨道结构关键部位,在高频列车荷载和环境共同作用下出现脱空损伤,引起脱空位置轨道结构刚度改变。为有效检测板式轨道的轨道板脱空情况,采用数值仿真分析得到无砟轨道模态信息,利用轨道脱空区域广义柔度曲率局部峰值进行轨道脱空损伤识别。结合广义柔度、均匀荷载面(Uniform load surface, ULS)、曲率和局部信息熵,提出可定位损伤的ULS曲率信息熵,并在CRTS III板式轨道上进行验证。研究结果表明:广义柔度曲率利用轨道脱空前后模态信息计算轨道脱空损伤曲率差,能够有效定位脱空位置;ULS曲率信息熵表征值只需要轨道的一阶模态信息便能够有效地反映轨道脱空位置及面积,且克服了广义柔度曲率需要健康模态信息的不足;轨道对称位置上相同面积脱空的ULS曲率信息熵值相同;ULS曲率信息熵值与脱空面积和厚度成正相关关系;ULS曲率信息熵表征值具有较好的损伤识别敏感性,能够识别小于单个测点布置面积的0.1 m×0.1 m小面积脱空,并且对轨道板边脱空识别敏感性高于轨道板中脱空识别敏感性。  相似文献   

18.
列车车轮不圆度是影响列车运行平稳性的重要因素,目前静态检测设备均需抬轮的准备工作,极大降低了检测效率,接触式传感器测量易发生损耗,导致测量发生误差,为提高检测效率以及避免检测误差,采用中点弦测法结合逆滤波器实现对车轮不圆度的车载式测量。检测时列车以低速运行,通过激光位移传感器实现非接触式测量,并同时利用3个激光位移传感器的具体位置关系和测量值得到弦测值作为逆滤波器的输入,构造逆滤波器的频率响应函数使一定波长范围内的不圆度数据得到还原,最后再构造低通滤波器以及进行离散傅里叶变换该车轮各个阶次多边形磨耗的粗糙度等级。通过实验测量数据验证,采用中点弦测法测得的车轮不圆度数据与真实不圆度数值的误差较小,可以实现车轮不圆度数据的车载式测量,各个阶次的粗糙度等级也可反映被测车轮目前的磨损状态。  相似文献   

19.
轨检仪弦测法"以小推大"检查轨道轨向不平顺的理论研究   总被引:3,自引:0,他引:3  
弦测法是轨道方向测量的一个基本方法,其主要不足在于它的幅值增益在空间频域内随不平顺波长变化而变化,这使弦测法的应用受到局限。本文讨论了弦测法的基本原理并推导了“以小推大”公式,在此基础上分析了轨检仪利用弦测法检测轨向不平顺时,“以小推大”方法的系统误差与随机误差,并进行了计算机仿真。仿真结果证明:“以小推大”公式对波长为整数倍弦长的线路原始轨向不平顺值能较好地进行拟合。最后,针对波长为非整数倍弦长的轨向不平顺值建议采用牛顿插值解法。  相似文献   

20.
南玉高铁六景郁江特大桥设计将钢-混部分斜拉桥结构引入时速350 km高速铁路领域,而300 m级以上大跨度桥上无砟轨道的竖向变形极易超限,影响列车通过的安全性和舒适性,因此,系统研究在此大跨桥梁结构上铺设无砟轨道的适应性十分必要。通过建立有限元及动力学模型,分析不同组合工况下无砟轨道结构的变形特点及动力特性,运用60 m弦测法探究各工况下无砟轨道的线形变化规律,从而确定大跨度钢-混部分斜拉桥铺设无砟轨道的适应性,并对设计和施工提出合理化建议。主要结论如下:在各种不利组合荷载作用下,桥上无砟轨道结构强度满足规范要求,列车通过大桥的各项安全性与舒适性指标均满足规范要求;混凝土收缩徐变和斜拉索升降温是影响无砟轨道线形标准的两大主因,应在无砟轨道施工前确保足够的沉降观测期和收缩徐变释放期,并充分考虑拉索的保温设计;在温度组合荷载作用下,桥上无砟轨道的60 m弦测不平顺幅值为6.79 mm,满足高速铁路静态验收标准;但在叠加列车荷载和收缩徐变后,变形弦测值均出现Ⅱ级及以上超限,通过合理设置预拱度后可有效改善轨道平顺性标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号