首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
研究目的:CA砂浆脱空是板式轨道的典型伤损,在列车荷载作用下,CA砂浆劣化将降低其疲劳寿命。为研究CA砂浆劣化对其自身疲劳寿命的影响,本文建立CRTSⅠ型板式轨道有限元模型,以Miner线性疲劳累计损伤准则为基础,研究CA砂浆在不同劣化情况下的应力和疲劳寿命,从而为无砟轨道的养护维修提供参考。研究结论:(1)仅考虑CA砂浆性能劣化50%时,列车荷载作用下CA砂浆所受的应力及疲劳寿命均减小,但仍能满足60年的使用寿命;(2)仅考虑CA砂浆层脱空和同时考虑CA砂浆层脱空与性能劣化50%时,CA砂浆层的压应力显著增大,疲劳寿命显著降低;(3)CA砂浆层板端脱空长度达到1.225 m时,CA砂浆的疲劳寿命不再满足60年的使用寿命;(4)建议CA砂浆的脱空长度应小于1.225 m,且在CA砂浆的服役寿命内加强养护维修,防止CA砂浆发生疲劳破坏;(5)本研究成果可为板式轨道CA砂浆的养护维修提供指导。  相似文献   

2.
板式无砟轨道中CA砂浆在列车荷载、环境温度等多种作用下容易产生脱空等伤损,准确检测出这些伤损显得尤为重要。针对CA砂浆的伤损,建立轨道板-CA砂浆模型,利用有限元软件对系统进行模态分析,通过计算分析得到轨道板的曲率模态,结合高斯曲率确定CA砂浆的伤损及伤损位置。计算结果表明:轨道板的前五阶高斯曲率可以反映伤损的有无及其具体位置,一阶高斯曲率最为明显。轨道板-CA砂浆系统一阶高斯曲率不仅可以准确识别单处CA砂浆伤损,还可以准确识别多处CA砂浆伤损。  相似文献   

3.
采用弹性系统动力学总势能不变值原理及形成矩阵的"对号入座"法则建立车辆-纵连板式无砟轨道空间耦合振动模型。根据已建模型建立CA砂浆脱空的分析模型,分析CA砂浆脱空对车轨动力响应的影响,分析脱空长度以及行车速度对纵连板式无砟轨道车轨动力响应的影响。研究结果表明:砂浆脱空后,当砂浆脱空长度大于1.2m后,随着脱空长度的增大,车辆的动力响应也随着增大,当脱空长度达到1.8m时,轮重减载率达到0.98,车体加速度达到1.64m/s2,均已超过限值。砂浆脱空后,随着行车速度的增大,系统动力响应也随着增大。当脱空长度为1.8m时,车体加速度均已超过限值,所以考虑行车舒适性建议控制脱空长度不超过1.8m。  相似文献   

4.
基于弹性地基梁体理论,考虑宽窄接缝与轨道板之间界面开裂与CA砂浆脱空耦合伤损,建立伤损状态下的CRTS Ⅱ型板式无砟轨道-简支梁桥结构有限元模型,分析宽窄接缝与CA砂浆不同伤损型式和不同位置耦合伤损尺寸在正温度梯度荷载作用下对无砟轨道-简支梁桥结构受力及变形的影响。研究结果表明:宽窄接缝与CA砂浆耦合伤损较宽窄接缝界面开裂或CA砂浆脱空单一伤损型式对结构受力与变形更为不利;当耦合伤损面积超过0.975 m×0.765 m,长度超过0.975 m或宽度超过0.51m时,轨道板拉应力超过其抗拉强度,影响结构的正常使用;随耦合伤损尺寸的增加,轨道板和CA砂浆的垂向位移均显著增大,底座板和桥梁的垂向位移呈微弱减小趋势;宽窄接缝与CA砂浆耦合伤损位于轨道板板边对结构受力和变形影响最大,耦合伤损位于板端次之,耦合伤损位于板角影响最小。  相似文献   

5.
CA砂浆脱空对框架型轨道板翘曲的影响分析   总被引:2,自引:2,他引:0  
CA砂浆填充层作为框架型板式轨道关键结构层,长期暴露于自然环境中,受列车荷载冲击、温度循环以及水的侵害等作用,砂浆层与轨道板间易产生脱空,劣化轨道结构受力状态。基于无砟轨道弹性地基梁体模型,分析了正常状态和砂浆层与轨道板间出现脱空时框架型板式轨道在温度梯度荷载作用下的受力情况,并针对板端横向全部脱空和板边纵向全部脱空两种常见脱空形式进行分析。结果表明,较低的砂浆弹性模量可减小轨道板翘曲和缓解列车荷载冲击作用;对于脱空状态,在正温度梯度作用下,轨道板受力和板角翘曲变形受脱空程度影响较大,而对砂浆层受力影响较小;在负温度梯度作用下,轨道板和砂浆层受力状态受脱空程度影响均不明显。  相似文献   

6.
衬砌脱空作为高铁隧道常见病害之一,威胁车辆和人员安全。目前,高铁隧道衬砌脱空检测多采用人工敲击听声的方法进行判断,受主观影响较大,准确率会受到影响。基于传统叩诊法原理并结合声音识别技术,对高铁隧道衬砌脱空的智能识别进行研究。采集京广高铁某隧道敲击检查的270段敲击声音样本,分析密实和脱空状态下的时域和频域特征。分析发现:衬砌背后密实与脱空时域波形特征和短时能量均有显著差异;密实状态下主频与次主频在6 200 Hz左右,脱空状态下主频与次主频在800 Hz左右。提取36维梅尔频率倒谱系数(MFCC),降维处理后作为机器学习数据集。采用极端梯度提升(XGBoost)算法训练与测试,建立基于MFCC的高铁隧道衬砌脱空智能识别模型,与优化的支持向量机(CV-SVM)模型和梯度提升决策树(GBDT)模型相比,识别准确率更高,达到96.87%。该模型可用于衬砌背后脱空的定性识别,相较于人工检测,智能化和信息化程度极大提升,对智能化和自动化诊断高铁隧道衬砌脱空缺陷具有重要意义。  相似文献   

7.
无砟轨道在长期列车荷载与外部环境的作用下其结构中CA砂浆层会出现空洞、脱空等损伤病害,这些损伤病害对铁路运营的安全产生巨大了的威胁.因此,对无砟轨道CA砂浆层的病害的防治与检测显得尤为重要.通过对多种无损检测方法的比对择优,采用探地雷达的探测方式,基于时域有限差分法编制Matlab程序,对地电模型进行三维正演模拟,确定探地雷达技术的可行性,而后建立无砟轨道板物理模型,在CA砂浆层设置不同大小的空洞病害,并使用探地雷达对模型进行探测,验证技术的可行性.研究结果表明:轨道板中分布的钢筋网对无砟轨道CA砂浆层病害的检测有着不同程度的影响;设置正反探测路线,能够准确识别出处于钢筋网环境下的病害的位置;随着空洞直径的逐步缩小,空洞的信号特征成减弱趋势.  相似文献   

8.
以CRTS Ⅰ型板式无砟轨道结构CA砂浆层为研究对象,采用冲击荷载作用下轨道板的动刚度变化指数作为评估指标,进行CA砂浆层粉化和局部脱空病害评估研究。提出CA砂浆层病害分步评估方法,首先利用轨道板上少量测点初步定位病害,然后通过在初步定位病害区域密布测点对病害进行精细化评估。运用数值模拟方法分析CA砂浆层病害位置和程度对动刚度变化指数的影响规律,确定对应关系,据此提出用于CA砂浆层病害状态评估的建议准则,即将CA砂浆层病害状态分为AA,A1,B和C共4级,对应的动刚度变化指数分别为≥0.5,[0.2,0.5),[0.1,0.2)和0.1。对1个实际轨道结构进行现场试验,并应用所提方法和准则对CA砂浆层的病害进行评估,评估结果和实际病害状况一致,证明所提方法的可靠性。  相似文献   

9.
因温度和列车动荷载等因素影响,CRTSⅠ型轨道板与CA砂浆间易产生离缝及拍打作用。采用瞬态动力分析方法研究轨道板与CA砂浆间的拍打速度,利用碰撞模拟两者间的拍打作用。研究结果表明:拍打速度随轴重呈线性增加关系,且在250 km/h时速下拍打作用最大,拍打速度为0.581 m/s;接触应力随拍打速度呈线性增加关系,随CA砂浆弹模的增加,在200 MPa前增加较快,大于200 MPa时,增加变缓,建议采用弹模小于200 MPa的CA砂浆或在离缝和脱空区域内填充弹模较小的材料。  相似文献   

10.
为研究CRTSⅠ型板式无砟轨道板端脱空对轨道动力特性的影响,铺设无砟轨道实尺模型,人工凿除CA砂浆模拟板端脱空,采用激振车对轨道施加振动荷载,测试并分析轨道振动位移和加速度等动力响应。结果表明:板端脱空对轮重减载率影响明显;板端脱空对钢轨和轨道板位移有一定影响,对底座板位移影响较小;脱空区钢轨和底座板均出现强烈振动,振动加速度约为无脱空的3倍;脱空造成轨道板剧烈振动,振动加速度增加10倍以上;底座板振动在脱空长度30cm时出现峰值,钢轨及轨道板在脱空长度大于70cm时振动加剧明显;随着激振频率的增加,轨道板板端脱空对轨道结构动力响应的影响更加明显。  相似文献   

11.
为研究城市轨道交通地铁线路减振型无砟轨道的使用对CA砂浆力学性能的要求,基于有限元理论,建立减振型单元板式无砟轨道的梁-体模型。一方面,研究减振垫的刚度对CA砂浆的变形和受力影响;另一方面,研究CA砂浆自身的弹性模量对其本身变形和受力的影响。研究结果表明:由于减振垫自身刚度较小的缘故,导致CA砂浆承受较大拉应力而存在受拉破坏的危险,随减振垫刚度的减小,CA砂浆和上部结构均会出现较大变形,进而影响轨道平顺性和行车安全;随CA砂浆自身弹性模量的增大,CA砂浆层所受拉应力随之增大,因此在配制高弹性模量的CA砂浆材料的同时必须保证其抗拉强度能够满足CA砂浆抗拉的要求。  相似文献   

12.
为获得水泥乳化沥青砂浆(CA砂浆)黏弹性本构关系,并利用这种本构关系进行各种数值计算,结合CA砂浆单轴静载压缩蠕变试验数据,对蠕变变形进行拟合,得到了由Burgers模型表示的黏弹性参数。针对ANSYS有限元软件的计算要求,推导了将Burgers模型参数转化为Prony级数的计算公式,并采用ANSYS软件进行数值计算。计算结果表明:Burgers模型的拟合相对误差小于1.7%,能较好地反映CA砂浆的蠕变特性;利用Prony级数方法得到的计算结果与试验结果的误差在2.5%以下;Prony级数的转化公式方法简单,计算准确。  相似文献   

13.
板式无碴轨道用CA砂浆的关键技术   总被引:33,自引:0,他引:33  
从对CA砂浆(水泥-沥青砂浆)垫层的要求出发,比较国产和日本的CA砂浆性能,阐述CA砂浆及专用乳化沥青的关键技术。我国的无碴轨道研究开发已经有了多年的基础,完成了一系列从试验室试验到现场试验、改进试验、再上道试验的过程,确立“从最终的使用性能要求出发”这一新概念进行CA砂浆的设计;通过对CA砂浆集料性质的反演,研究集料的特性,进行混合料设计和性能分析,确定新材料的合理配方;按照使用性能要求研究CA砂浆的质量检验方法。采用阳离子乳化剂进行沥青的乳化,增强合成材料的包容性;使用高分子聚合物材料作为添加剂进行沥青改性,改进沥青的结构—力学性能;设计适应不同温度地区使用的材料配方和添加剂;指出CA砂浆的制备和施工设备必须专业化,以满足大规模生产和施工时稳定CA砂浆质量的要求。建议从使用性能出发,建立CA砂浆的质量检验标准体系。  相似文献   

14.
流变性能是新拌CA砂浆重要性能之一,其对砂浆流动性和稳定性有显著影响。文章采用流变剪切仪分别研究了CRTSⅠ型板式无砟轨道用CA砂浆的剪切应力、粘度系数与剪切速率的关系,分析了CA砂浆的流变类型,进而建立了其流变方程。并采用粘度计研究了CA砂浆固液相体积分数与其表观粘度的关系。研究结果表明:新拌CA砂浆在0.1~1 s-1的低剪切速率区域剪切应力与剪切速率为非线性关系,其流变方程为指数型;在1~300 s-1的高剪切速率区域剪切应力与剪切速率为线性关系,其流变方程为宾汉姆型;而在较粗略的情况下,CA砂浆的流变方程可简单表示为宾汉姆型或牛顿型。在相同剪切速率下,CA砂浆表观粘度随固相体积分数的增加而增大,二者呈指数关系。  相似文献   

15.
为研究水泥乳化沥青砂浆(CA砂浆)的短期蠕变特性,采用现场取样的CA砂浆圆柱体试件,在WDW系列电子万能试验机上进行单轴静载蠕变试验。根据试验结果,采用Burgers模型和"四单元五参数"模型(修正的Burgers模型)描述CA砂浆的蠕变特征,分析"四单元五参数"模型参数对蠕变过程的影响。结果表明:随着荷载应力的增大,CA砂浆的蠕变变形及蠕变劲度模量均随之增大;Burgers模型与"四单元五参数"模型都能较好地反映CA砂浆的蠕变特性;"四单元五参数"模型的参数主要影响蠕变过程的初始位置、延迟弹性变形及其曲线的弯曲程度和黏性流动变形阶段的曲线斜率;考虑CA砂浆黏弹性特性对板式无砟轨道的力学分析具有一定的参考价值。  相似文献   

16.
地铁减振型无砟轨道结构中,CA砂浆层位于轨道板和隔振垫之间,起着支承、传载和调整的功能。由于隔振垫的存在,CA砂浆层极易发生破坏,因此需要全面地研究轨道结构参数对CA砂浆的应力影响规律。基于弹性地基梁体模型,研究轨道板的混凝土等级、CA砂浆弹性模量、隔振垫刚度及轨道板长度4个轨道结构参数对CA砂浆应力的影响规律,并通过应力匹配图得到合理的轨道结构参数匹配。得到的结论是CA砂浆弹性模量是对CA砂浆应力影响最敏感的参数;轨道板的混凝土等级、CA砂浆弹性模量、隔振垫刚度及轨道板长度4个轨道结构参数对CA砂浆最大拉应力的影响远大于对CA砂浆最大压应力的影响;通过应力匹配图,提出较为合理的轨道结构参数匹配:轨道板使用C80等级的混凝土、CA砂浆取中低弹模3 000 MPa、隔振垫刚度取0.04 N/mm~3、轨道板长度取4.097 m。  相似文献   

17.
周灵  杨松 《铁道建筑》2012,(8):140-142
利用机制山砂(MFA)代替河砂进行了板式无砟轨道用CA砂浆的配制研究工作,通过对山砂CA砂浆(MCAM)的以抗压强度和流动性为验证指标的正交试验,初步证明了机制山砂应用于CA砂浆中的可能性和各原材料之间的相适性。试验结果表明:"乌江"水泥与专用沥青乳液是相适的;对山砂CA砂浆28 d抗压强度影响因素由大到小依次为水泥、乳化沥青和山砂;水泥与乳化沥青的比值C/A值宜控制在0.6~0.7之间;山砂CA砂浆28 d抗压强度可以达到1.8 MPa以上,甚至达到3.0 MPa。  相似文献   

18.
CA砂浆是一种温度敏感性材料,温度变化将直接影响其受压承载的性能。为了研究极端温度对CA砂浆性能产生的影响,将CRTSⅠ型CA砂浆分别放在-50、-40、-30、20、40、60、80℃环境下进行单轴压缩试验,分析CA砂浆在不同极端温度下受压的规律以及伤损特性。结果表明:随着温度的升高,CA砂浆的抗压强度和弹性模量变小,并利用模量-温度曲线更直观地表现出CA砂浆由脆性逐渐转变为塑性,同时给出了受温度影响的CA砂浆温度-抗压强度的经验公式。以切线模量的变化来判断CA砂浆的温度损伤程度,分析CA砂浆温度损伤规律和伤损槛值随温度的变化规律,随着温度的升高,CA砂浆损伤应力槛值减小,当温度增大到一定时,CA砂浆的应力槛值与抗压强度的比值RC受温度的影响不是很明显。  相似文献   

19.
CRTSⅠ型板式无砟轨道的CA砂浆产生伤损后,容易形成轨道板板底脱空,造成轨道刚度局部突变,不利于轨道结构受力和行车安全。通过对框架型板式轨道砂浆层伤损进行现场试验,评估砂浆伤损对轨道系统动力特性的影响。基于轮轨系统动力学原理,建立车辆-框架型板式轨道垂向耦合振动模型,研究分析不同形式、尺寸的砂浆伤损对轮轨系统动力特性的影响。现场试验和理论研究表明:宽度小于0.2m的砂浆伤损对行车的影响有限,列车轴重对砂浆伤损的影响明显;轨道板端砂浆伤损形式对轮轨系统振动的影响较大,当砂浆伤损沿纵向宽度超过0.6m时,车辆和轨道系统各部件动力响应明显增大;从动力学的角度出发,砂浆伤损沿轨道纵向宽度不宜超过0.6m,沿轨道横向宽度不宜超过0.2m。  相似文献   

20.
我国京津城际铁路首次采用博格板式无砟轨道,无砟轨道的混凝土底座和轨道板之间采用具有弹性的CA砂浆垫层,该垫层的选料、配制和施工是板式无砟轨道的核心技术之一,对保证轨道线路的平整度和安全运行起到重要作用。此文针对使用CA砂浆的重要性,阐述CA砂浆的配比设计原则和原材料的选用,论述CA砂浆在硬化过程中强度形成机理及影响强度的主要因素。同时对配制和使用CA砂浆的经济性能进行分析,对CA砂浆施工质量提出建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号