首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
研究目的:岩土锚固技术是岩土工程领域的重要分支,被广泛应用于土木、矿山、水电等工程领域,但关于锚固结构荷载传递机理的细观力学研究相对较少。本文依据现场试验,通过建立锚杆拉拔试验颗粒流数值模型,探讨不同荷载作用下轴力、锚固界面剪应力分布特征以及周边岩土体的细观力学特性。研究结论:(1)建立了锚杆张拉试验颗粒流数值模型,通过将计算结果与试验数据进行对比,验证了模型的合理性与有效性;(2)分析了锚固结构的荷载传递机理,其界面剪应力沿锚杆方向的分布是不均匀的:在弹黏性阶段,锚固界面剪应力以及轴力分布均为单调递减曲线;在弹塑性阶段,界面剪应力峰值点大致位于弹塑性变形区和弹黏性变形区的分界位置,并且随着张拉荷载的逐渐增大,界面剪应力峰值不断增大,峰值点不断向远端推移;(3)无论是在重力作用下还是受到拉拔荷载时,锚孔周边岩土体的强力接触力和弱力接触力基本垂直,在受到拉拔荷载时,周边岩土体的颗粒会发生重排列,导致强力接触力与弱力接触力方向产生强烈偏转;(4)本文研究方法与结论可为类似锚固结构的设计与力学分析提供理论借鉴。  相似文献   

2.
弹性状态下锚杆位移变形分析   总被引:17,自引:1,他引:16  
将锚杆拉拔位移分解成自由段的弹性变形、锚固段的拉伸变形和锚固段与土体之间的相对剪切位移。分析锚杆自由段长度、锚固段长度、锚杆体截面积、浆体强度、锚杆孔径及土层剪切模量与锚杆弹性模量的比值等因素对锚杆位移的影响。在此基础上,假定锚固段与其周围土体之间的剪应力与剪切位移呈线性递增关系、锚固段所受的轴力呈抛物线分布,建立锚杆荷载与位移之间的关系式。  相似文献   

3.
锚杆位移变形分析   总被引:1,自引:0,他引:1  
假定锚固体与其周围土体之间的剪应力与剪切位移呈线性递增关系 ,锚固体所受的轴力呈抛物线分布 ,将锚杆的抗拔位移分解成自由段的弹性变形、锚固段的拉伸变形和锚固体与土层之间的相对剪切位移 ,建立了锚杆位移计算模型 ;并将计算结果与工程实例进行对比 ,二者较为吻合  相似文献   

4.
探索运用1种新型支护形式预应力锚杆—锚索协同支护体系,在京张高铁八达岭长城站大跨过渡段跨度极大(32.7 m)且围岩质量极差(Ⅴ级围岩)的情况下保障隧道安全建设。通过现场监测,研究预应力锚杆—锚索的力学行为,结合现场围岩微震监测,分析预应力锚杆—锚索协同支护机理。结果表明:预应力锚杆、锚索的轴力均由初始预应力、预应力损失和被动支护力3部分决定;在隧道开挖过程中,锚杆和锚索的轴力演化过程可分为预应力快速损失、轴力波动和轴力稳定3个阶段,且预应力锚杆轴力沿自由段非均匀分布,锚杆自由段存在多个中性点;预应力锚杆锚固于浅层围岩内部,与被锚固岩体组成组合拱结构承担围岩荷载;预应力锚索锚固于深层围岩区域,调动深层围岩的承载力承担围岩荷载,并提高锚杆组合拱的稳定性;预应力锚杆—锚索协同作用实现了超大跨度隧道围岩的有效支护。  相似文献   

5.
基于损伤理论的全长式锚杆荷载传递机理研究   总被引:1,自引:0,他引:1  
根据损伤理论的基本原理,定义岩土体剪切损伤变量及其相应的损伤演化方程;依据岩土体在剪切应力作用下的损伤特性和锚杆在岩土体中的荷载传递机理,建立锚杆在岩土体损伤时的荷载传递微分方程并推导出锚杆轴力、剪切位移和侧摩阻力沿着锚杆长度分布的解析解,该理论解答综合考虑锚杆长度、锚杆直径和岩土体的损伤特性、剪切模量及压缩模量等因素的影响。然后利用数值分析的手段对锚杆的轴力和侧摩阻力与损伤变量、锚杆长度及锚固体直径之间的关系进行分析。最后利用一组有效的试验值与上述模型进行对比分析,显示该模型的合理性。  相似文献   

6.
以重庆沙坪坝铁路枢纽综合改造工程开挖形成的岩质直立边坡为原型,利用FLAC3D软件建立数值计算模型,分析预应力锚板墙边坡支护结构在不同开挖位置的爆破荷载作用下的动力响应特性。在此基础上,讨论锚杆预应力大小、爆破峰值荷载和锚固段长度几种参数对于支护结构受力状态和结构变形的影响。计算结果表明:爆破作用下锚杆轴力增量分布与静力作用下相似,并且锚杆轴力增量和板墙位移都在边坡中部达到最大,而上下位置较小。对比锚杆轴力增量和板墙水平位移增量的数值模拟和理论计算结果,验证了板—锚结构之间存在的变形协调现象。通过各种影响因素的计算结果分析得到了岩质边坡预应力锚板墙支护在爆破作用下的动力变化规律。  相似文献   

7.
为研究管幕钢顶管顶进施工过程钢管产生的力学效应,建立顶管-泥浆-复合地层数值模型,分析钢顶管内力及泥浆界面受力特征。研究结果表明:顶管在顶入时主要受到泥浆正向压力和剪切作用,沿轴向顶管轴力尾部至前端逐渐减小,竖向顶管轴力下部略大于上部,从而形成微小转动弯矩致使尾部略微上浮;在同一横截面,顶管下部轴力大于上部轴力,轴向上顶管尾部轴力大于前端轴力,顶管顶入所需荷载随顶入长度增加而增大,增长曲线呈非线性,随顶入深度增大,增幅逐渐减少;受泥浆力学特性和地层围压影响,泥浆剪应力由顶管顶部至底部逐渐增大,顶管顶入距离越长,泥浆剪应力极值越小。  相似文献   

8.
边坡锚固因其良好的力学性能和锚固效果而获得广泛应用.借助有限差分软件FLAC3D,对高8m、坡角60°的均质岩坡在不同峰值加速度、频率地震波作用下的动力响应进行了分析.研究表明,调整输入Kobe地震波的加速度和频率,锚固岩质边坡沿顺坡面上加速度峰值放大系数PGA非线性增大,在坡顶处达到最大值.塑性破坏区随着峰值加速度、输入地震波频率的增大而增加,锚杆轴力随相应的塑性破坏区增多而增大.  相似文献   

9.
依托实际工程,开展压力分散型预应力锚索的锚固应力测试研究,测试结果表明:对于两级间距2 m的承载体而言,黏结应力影响范围大致分布在距锚固段底部5.0 m左右,且此范围随所受荷载大小变化很小;与黏结应力分布一样,轴力分布也有2个峰值,分别在2个承载体外荷载作用的位置,影响范围集中在距锚固段底部4.8 m左右。实测对比计算成果,变化趋势基本吻合,反映了注浆体应力应变分布的真实规律,可为今后类似锚固工程提供参考。  相似文献   

10.
根据锚杆与桩的荷载传递过程的相似性,分析群锚荷载传递机理;引入群锚"加筋"效应的概念,考虑加筋效应影响下的群锚位移变化规律,建立群锚位移计算基本微分方程,提出了一种新的能更全面考虑锚杆间相互作用的群锚位移计算方法。通过改变锚杆间距、直径、锚固体长度,得到不同参数对群锚位移的影响。最后,采用该位移计算方法对某实验进行分析,分析结果表明,位移计算值与实测值较吻合,且该方法计算工作量小,便于工程应用。  相似文献   

11.
研究目的:高速列车运营荷载作用将导致复合结构路基产生沉降。由于高铁对路基沉降要求高,复合结构路基的荷载传递和沉降变形规律值得工程界关注。为研究高铁复合结构路基荷载传递以及沉降变形规律的影响因素,本文建立高速铁路复合结构软土路基三维有限元分析模型,将高速铁路列车运行荷载简化为均布荷载作用于轨道板以下的路堤顶面,分析桩长、桩间土模量和下卧层模量对桩身轴力分布、桩土应力比以及路基沉降的影响规律。研究结论:(1)桩身轴力随桩长增加而增大,路基沉降则明显减小;在不同桩长下,桩土应力比沿桩身距离路基中心水平方向位置的变化均表现为先增大再减小的趋势,10 m、12.5 m、15 m和20 m桩长下桩土应力比稳定值分别为6.8、10、13和17;(2)桩身轴力随桩间土模量增大而减小;在不同桩间土模量下,桩土应力比随桩身距路基中心水平位置的偏移先稳定后增大再减小,10 MPa、30 MPa和50 MPa桩间土模量下桩土应力比分别为30、12和7;(3)下卧层模量增大使桩端摩阻力增大,桩身中性点位置向下偏移;桩土应力比随水平位置偏移的变化规律同样是先增大后减小,下卧层模量增大能使桩的沉降明显减小,但对路基总沉降影响不大;(4)该研究结论可为高铁复合结构路基及类似工程设计和施工提供理论参考。  相似文献   

12.
压力型锚索锚固段应力分布规律及锚固段设计   总被引:1,自引:1,他引:0  
根据Mindlin问题的位移解和弹性力学理论,基于变形协调假定,导出了压力型锚索锚固段粘结应力和轴力分布弹性理论解.采用岩质边坡条件下的参数,对锚固段应力分布进行了计算,总结了软岩条件下锚固段应力分布特征,并具体分析了锚固体半径对应力分布的影响,提出在设计中可以利用应力分布弹性理论解计算得到的应力分布曲线和应力峰值进行锚固段设计的思路,为压力型锚索的设计计算提供了一种参考依据.  相似文献   

13.
借助非线性分析程序ANSYS/LS-DYNA3D,建立重载铁路轨道—路基—地基三维显式动力分析模型,引入三维一致黏弹性人工边界,采用梯形脉冲荷载模拟弹射冲击荷载,分析150~600 kN幅值的弹射冲击荷载作用时重载铁路路基系统的动应力特征。结果表明:路基系统的垂向动应力随时间的变化规律与弹射荷载基本一致;不同幅值弹射荷载作用下路基动应力沿线路横、纵向均呈对称分布,且弹射荷载幅值越大,动应力沿深度的衰减规律越接近指数型衰减;幅值为600 kN的弹射荷载在路基中的影响深度约为道床顶面以下8 m;随着弹射荷载幅值的增大,路基动应力的轮对效应及道床层对钢轨动力的分担作用均越来越显著;路基的动应力峰值与弹射荷载幅值大致呈线性关系;为满足弹射荷载下路基动强度的要求,若路基基床表层、底层和路基本体的填筑材料分别选用A组填料、碎石类填料和细粒土填料,则当弹射荷载幅值为600 kN时,三者的地基系数K30的建议值分别取390,310和135 MPa·m~(-1)。  相似文献   

14.
利用CRTSⅢ型板式无砟轨道-路基系统实尺模型开展落轴冲击试验,同时运用Ansys/LS-Dyna软件进行轨道-路基落轴冲击动力有限元模拟分析,在试验结果和数值结果对比验证的基础上,系统研究落轴荷载作用下轨道和路基结构动应力分布规律,比较落轴高度和加载位置对动应力分布的影响。研究结果表明:试验结果和数值结果具有较好的一致性,两者可以相互验证,互为补充。轨道结构各层动应力均在钢轨正下方达到最大值,动应力幅值沿线路横向分布总体上呈驼峰形分布;沿线路纵向大致呈正态分布,自密实层应力幅值在板端附近有明显地回弹。路基动应力幅值底座板宽度范围内,沿横向分布比较均匀,在底座板宽度范围外快速衰减;沿线路纵向大体上呈正态分布;路基动应力幅值沿深度的衰减速度随着深度的增加而减小,在基床内衰减较快,基本呈线性或者分段线性衰减,在路基本体内衰减非常缓慢。轨道和路基动应力幅值总体上随落轴高度增加而线性增加,但沿线路纵横向分布规律不变。相对于板中加载,板端加载时轨道和路基各层面动应力幅值均有所增大,越靠近加载点增幅越明显,但是2种加载条件下轨道和路基结构应力幅值分布规律基本一致。  相似文献   

15.
预应力传递长度是先张法预应力轨道板结构设计的关键参数。基于直径10mm螺旋肋钢丝与混凝土黏结-滑移本构关系,运用有限元软件ANSYS,分析预应力钢筋端部不设置和设置锚固板时先张预应力轨道板的混凝土压应变、预应力钢筋轴力和滑移区长度,研究预应力钢筋端部设置锚固板对减小预应力传递长度的作用机理。结果表明:锚固板承担了大部分预应力钢筋的张拉力,从而有效减小预应力钢筋和混凝土间的滑移区长度和滑移量,使得轨道板的预应力传递长度也显著减小。在直径为10mm的螺旋肋钢丝端部不设锚固板和分别设置直径为20和40 mm的锚固板,进行轨道板试件传递长度试验,得到的预应力传递长度分别为425,225和225mm,可见设置锚固板后可减小预应力传递长度47.06%;当锚固板的直径达到一定值后,其对轨道板试件预应力传递长度的影响较小;随时间的增加,无锚固板的轨道板试件预应力传递长度呈增大趋势,而设置锚固板的轨道板试件预应力传递长度则相对稳定。  相似文献   

16.
针对复杂工程环境中高地温导致锚杆支护结构锚固性能劣化和结构损伤的现象,研究工作荷载和高温同时作用下对其极限拉拔力的影响。基于力学相似原理设计并制作了3组共9个锚杆试件,通过室内逐级加载拉拔试验,得到试件在不同工作荷载和养护温度作用下,锚杆的极限拉拔力变化规律。研究结果表明:工作荷载越大养护温度越高的试件其裂缝数量最多且宽度最宽;所有锚杆试件的荷载-位移曲线大致相同并且都存在弹性、屈服、塑性强化和拔出破坏4个阶段,曲线呈现三折线特征;当试件的工作荷载一定时,试件的极限拉拔力随养护温度的升高呈现先增高后降低的规律;当试件的养护温度一定时,试件的极限拉拔力随工作荷载的增大而减小。  相似文献   

17.
通过对现场试验数据的整理分析,给出了压力分散型锚索单元体的轴应变分布特征和剪应力分布规律,并对单元体锚固段的有效长度、注浆体的开裂情况及岩体对无粘结钢绞线的握裹力进行了讨论和分析。试验结果对压力分散型锚索的设计具有一定的参考价值。  相似文献   

18.
对高速铁路采空区桥梁群桩基础的受力机理研究,目前还非常少见。以合肥至福州高速铁路官山底特大桥采空区群桩基础为原型,通过数值模拟获得群桩受力规律。研究表明:随着荷载增大,桩上部轴力变化明显,桩身轴力沿深度逐渐减小,在采空巷道内桩身轴力不变,所有桩均为端承摩擦桩;桩侧摩阻力沿桩身先增大后减小,整个桩的侧摩阻力分布重心下移,穿过采空区的桩侧摩阻力分布重心比未穿越采空区的桩下移深度略深;承台下中部的桩间土应力要大于承台边角位置的桩间土应力,随着荷载增大,桩间土应力增长速率小于桩顶应力,桩身开始承担更多荷载。  相似文献   

19.
荷载分散型锚索差异补偿荷载的广义确定   总被引:1,自引:0,他引:1  
研究目的:本文研究荷载分散型锚索张拉过程中差异补偿荷载的确定理论和方法.研究结论:本文提出的荷载分散型锚索张拉时差异补偿荷载的广义确定计算方法,适用于各种荷载分散型锚索,具有较强的实用性;锚索在进行整体张拉之前,从底部较长的锚索单元开始对各单元锚筋依次进行补偿张拉后再一起张拉至设计张拉荷载,可以使各单元锚筋的受力均匀;在考虑各单元锚筋计算变形段摩阻的情况下,锚索张拉后作用于锚固段的锚固力更接近于设计锚固力.  相似文献   

20.
通过给冻土单桩模型上端施加循环荷载,分析循环荷载幅值、频率及冻土温度的变化对桩身应变、桩身轴力、桩侧冻结应力以及桩土相对位移的影响规律,开展循环荷载作用下冻土桩基力学特性的研究。研究结果表明:桩身应变随着加载时间先增加后稳定,且低温环境和小荷载条件下更有利于桩身应变的稳定;桩身的应变随荷载幅值及频率的增加而变大,随温度的降低而减小;桩身轴力沿着桩深不断减小,是由于桩侧土体使桩从上部开始受力;低温环境下桩身轴力相对较小,这是冻土地区桩基稳定的有利条件;桩侧冻结应力首先从桩基的上端发挥作用,并逐渐向下传递,分别增大荷载幅值、频率及降低温度都会增强桩侧冻结应力;桩土相对位移受荷载幅值、频率及温度的影响明显,频率能够影响桩土的承载模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号